distributed_py.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
          .def("allreduce",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  distributed::ReduceOp op) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::AllreduceOptions opts;
                 opts.reduce_op = op;
                 std::vector<Tensor> tensors = {tensor};
                 return self.AllReduce(tensors, opts);
               },
               py::arg("tensor"), py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("broadcast",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int source_rank) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::BroadcastOptions opts;
                 opts.source_rank = source_rank;
                 std::vector<Tensor> tensors = {tensor};
                 return self.Broadcast(tensors, opts);
               },
               py::arg("tensor"), py::arg("source_rank"),
               py::call_guard<py::gil_scoped_release>());

#if defined(PADDLE_WITH_NCCL)
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
      .def(py::init<const distributed::ProcessGroupStrategy &, int, int>(),
           py::call_guard<py::gil_scoped_release>());

  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
      .def("wait", &distributed::ProcessGroup::Task::Wait,
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
      .def("synchronize", &distributed::ProcessGroup::Task::Synchronize,
           py::call_guard<py::gil_scoped_release>());
#endif

  // define parallel strategy, it will be removed
  py::class_<distributed::ProcessGroupStrategy> pg_strategy(
      *m, "ProcessGroupStrategy", "");
  pg_strategy.def(py::init())
      .def_property("nranks",
                    [](const distributed::ProcessGroupStrategy &self) {
                      return self.nranks_;
                    },
                    [](distributed::ProcessGroupStrategy &self, int nranks) {
                      self.nranks_ = nranks;
                    })
      .def_property("local_rank",
                    [](const distributed::ProcessGroupStrategy &self) {
                      return self.local_rank_;
                    },
                    [](distributed::ProcessGroupStrategy &self,
                       int local_rank) { self.local_rank_ = local_rank; })
      .def_property(
          "trainer_endpoints",
          [](const distributed::ProcessGroupStrategy &self) {
            return self.trainer_endpoints_;
          },
          [](distributed::ProcessGroupStrategy &self,
             std::vector<std::string> eps) { self.trainer_endpoints_ = eps; })
      .def_property("current_endpoint",
                    [](const distributed::ProcessGroupStrategy &self) {
                      return self.current_endpoint_;
                    },
                    [](distributed::ProcessGroupStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property("nrings",
                    [](const distributed::ProcessGroupStrategy &self) {
                      return self.nrings_;
                    },
                    [](distributed::ProcessGroupStrategy &self, int nrings) {
                      self.nrings_ = nrings;
                    });
147 148 149 150 151 152 153 154 155 156 157 158 159

  m->def("eager_assign_group_by_size",
         [](py::handle py_tensors, std::vector<bool> is_sparse_gradient,
            std::vector<size_t> group_size_limits,
            std::vector<int64_t> tensor_indices) {
           auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
           return distributed::Eager_AssignGroupBySize(
               tensors, is_sparse_gradient, group_size_limits, tensor_indices);
         },
         py::arg("tensors"), py::arg("is_sparse_gradient"),
         py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
         py::arg("tensor_indices") = std::vector<int64_t>{},
         py::call_guard<py::gil_scoped_release>());
160 161 162 163
}

}  // end namespace pybind
}  // namespace paddle