conv_cudnn_op.cu 59.8 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
17

L
liym27 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
22 23 24
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
L
liym27 已提交
25
#include "paddle/fluid/operators/conv_cudnn_helper.h"
26
#endif
L
liym27 已提交
27
#include "paddle/fluid/operators/conv_op.h"
28
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

46 47 48 49
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
50 51 52 53 54
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
58 59 60 61 62 63 64 65
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
66

L
liym27 已提交
67
    bool exhaustive_search =
68 69
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
70 71 72 73 74 75
    bool deterministic = FLAGS_cudnn_deterministic;
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));
L
liym27 已提交
76 77 78 79 80 81

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

82 83
    auto dtype = platform::CudnnDataType<T>::type;

84 85 86 87
#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
88 89 90 91 92 93 94 95
    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
96
#endif
97 98 99 100
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
101 102 103
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
104
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
105
    T* output_data = nullptr;
106 107
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
108 109 110 111 112 113 114 115 116
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
117 118 119 120 121 122 123 124 125 126 127
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
128 129 130 131 132
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
133
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
134
    framework::DDim in_data_dims;
135 136 137 138 139 140 141 142 143 144 145
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
146 147 148 149 150 151

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
152
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
153 154 155 156 157 158 159

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
160 161 162 163 164 165 166

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
167 168 169 170 171 172

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
201
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
202 203 204 205
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
206
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
207 208 209 210
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
211 212
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
213 214 215
      }

    } else {
216
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
217 218 219 220 221 222 223 224 225 226 227 228
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
229
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
230 231

    // ------------------- cudnn descriptors ---------------------
232 233 234 235 236 237 238
    ConvArgs args{&transformed_input,
                  &transformed_filter_channel,
                  &transformed_output,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
L
liym27 已提交
239 240 241

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
242 243 244 245 246
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
247 248 249 250
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
251 252

#ifdef PADDLE_WITH_HIP
253
    // MIOPEN need to set groups in cdesc in miopen_desc.h
254 255 256
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), groups);
#else
A
AshburnLee 已提交
257 258
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn());
259
#endif
L
liym27 已提交
260

261
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
262 263 264
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
265 266 267
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
                                                         groups));
L
liym27 已提交
268
    groups = 1;
269 270 271 272
#endif
#ifdef PADDLE_WITH_HIP
    // MIOPEN do not set groups in wdesc after set groups in cdesc
    groups = 1;
L
liym27 已提交
273
#endif
274 275 276
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
277 278
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
279 280 281 282 283 284 285 286 287 288 289 290

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
291 292 293

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
294
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
295 296
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
297 298 299 300
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t algo{};
    using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
301 302
    workspace_size = search::GetWorkspaceSize(args);
    algo = search::Find<T>(args, exhaustive_search, false, workspace_size, ctx);
303
#else
L
liym27 已提交
304 305
    cudnnConvolutionFwdAlgo_t algo{};
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
306
    algo = search::Find<T>(args, exhaustive_search, false, ctx);
L
liym27 已提交
307
    workspace_size = search::GetWorkspaceSize(args, algo);
308
#endif
L
liym27 已提交
309

310
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
311 312 313 314 315 316 317 318 319
    // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
    // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
    if (ctx.Attr<int>("groups") > 1) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
    }
#endif

L
liym27 已提交
320
    // ------------------- cudnn conv forward ---------------------
321
    ScalingParamType<T> alpha = 1.0f;
322 323
    ScalingParamType<T> beta = 0.0f;

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
// NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
// ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
// VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args.idesc.desc(), input_data,
                  args.wdesc.desc(), filter_data, args.cdesc.desc(), algo,
                  &beta, args.odesc.desc(), output_data, workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
L
liym27 已提交
340 341 342
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
343 344 345 346 347 348 349
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
350 351 352
          },
          workspace_size);
    }
353
#endif
L
liym27 已提交
354

355
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
356 357 358 359 360 361 362 363 364 365 366
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
367 368 369
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
388

L
liym27 已提交
389
    bool exhaustive_search =
390 391
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
L
liym27 已提交
392
    bool deterministic = FLAGS_cudnn_deterministic;
393 394 395 396 397 398
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
399 400 401
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

402
    auto dtype = platform::CudnnDataType<T>::type;
403 404 405 406 407

#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
408 409 410 411
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
412
#endif
413 414 415 416
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
417 418 419 420
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
421 422
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
423

424 425 426
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
440 441
        // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
        // the data of input_grad to transformed_input_grad_channel.
442
        if (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) {
443 444 445
          TransToChannelFirst<platform::CUDADeviceContext, T>(
              ctx, input_grad, &transformed_input_grad_channel);
        }
L
liym27 已提交
446 447
      }
    } else {
448 449
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
450 451 452 453 454
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
473 474
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
475
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
476
    framework::DDim in_data_dims;
477 478 479 480 481 482 483 484 485 486
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
487 488 489 490 491 492 493
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
494
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
495 496 497 498 499 500 501 502 503 504
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
505 506 507 508 509 510
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
511 512 513 514

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
515 516 517 518 519 520 521 522 523 524 525 526 527 528
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
551
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
552 553 554 555
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
556
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
557 558 559 560
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
561 562
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
582
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
583 584 585 586 587
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
588
                   &transformed_filter_channel,
L
liym27 已提交
589 590 591
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
592 593
                   dilations,
                   dtype};
L
liym27 已提交
594
    ConvArgs args2{&transformed_input,
595
                   &transformed_filter_grad_channel,
L
liym27 已提交
596 597 598
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
599 600
                   dilations,
                   dtype};
L
liym27 已提交
601 602

    auto handle = dev_ctx.cudnn_handle();
603 604 605 606 607
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
608 609 610 611 612 613
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
614 615 616 617 618 619 620 621 622 623 624
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
625 626 627

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
628
    int group_offset_filter = transformed_filter_channel.numel() / groups;
629 630 631 632 633 634 635
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
636 637 638 639
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
640
#endif
L
liym27 已提交
641
    size_t workspace_size = 0;
642 643
    int iwo_groups = groups;
    int c_groups = 1;
L
liym27 已提交
644

645
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
646 647 648 649 650 651 652 653 654 655
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
656 657 658
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
659 660
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
L
liym27 已提交
661

662 663
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
664 665 666 667
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo = search1::Find<T>(args1, exhaustive_search, deterministic,
                                   workspace_size, ctx);
668
#else
L
liym27 已提交
669 670
      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
671
          search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
L
liym27 已提交
672 673
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
674
#endif
L
liym27 已提交
675 676 677 678
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
679
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
680
      args2.handle = handle;
681 682 683 684
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
685 686
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
687 688
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
689 690 691 692
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo = search2::Find<T>(args2, exhaustive_search, deterministic,
                                     workspace_size, ctx);
693
#else
L
liym27 已提交
694 695
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
696
          search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
L
liym27 已提交
697 698
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
699
#endif
L
liym27 已提交
700 701 702
    }

    // ------------------- cudnn conv backward data ---------------------
703
    ScalingParamType<T> alpha = 1.0f;
R
ronnywang 已提交
704 705 706 707
#ifdef PADDLE_WITH_HIP
    // MIOPEN ONLY support beta to be 0.0f
    ScalingParamType<T> beta = 0.0f;
#else
708 709
    ScalingParamType<T> beta =
        (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) ? 1.0f : 0.0f;
R
ronnywang 已提交
710
#endif
711 712
    VLOG(4) << "Conv_grad: use_addto = "
            << (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto"));
713

L
liym27 已提交
714
    if (input_grad) {
715 716
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
717
#ifdef PADDLE_WITH_HIP
718
      if (ctx.HasAttr("use_addto") && ctx.Attr<bool>("use_addto")) {
R
ronnywang 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
        Tensor temp_tensor(transformed_input_grad.type());
        temp_tensor.Resize(transformed_input_grad.dims());
        T* temp_tensor_data = temp_tensor.mutable_data<T>(ctx.GetPlace());
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(), temp_tensor_data,
                      cudnn_workspace_ptr, workspace_size));
            },
            workspace_size);
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenOpTensor(
            handle, miopenTensorOpAdd, &alpha, args1.idesc.desc(),
            transformed_input_grad_data, &alpha, args1.idesc.desc(),
            temp_tensor_data, &beta, args1.idesc.desc(),
            transformed_input_grad_data));
      } else {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(),
                      transformed_input_grad_data, cudnn_workspace_ptr,
                      workspace_size));
            },
            workspace_size);
      }

751
#else
752
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
753 754
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
755 756 757 758 759 760 761 762
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
763 764 765
            },
            workspace_size);
      }
766
#endif
W
wangchaochaohu 已提交
767 768 769
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
770

W
wangchaochaohu 已提交
771 772 773 774
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
775

W
wangchaochaohu 已提交
776 777
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
778
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
779 780 781
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
782
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
783 784 785
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
786 787
      }

788
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
789 790 791 792
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
793 794 795

    // filter_grad do not use inplace addto.
    ScalingParamType<T> beta_filter = 0.0f;
L
liym27 已提交
796 797
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
798
// Because beta is zero, it is unnecessary to reset filter_grad.
799
#ifdef PADDLE_WITH_HIP
800 801 802 803 804 805 806 807 808 809
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args2.odesc.desc(), output_grad_data,
                    args2.idesc.desc(), input_data, args2.cdesc.desc(),
                    filter_algo, &beta, args2.wdesc.desc(), filter_grad_data,
                    cudnn_workspace_ptr, workspace_size));
          },
          workspace_size);
810
#else
811
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
812 813
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
814 815 816 817 818 819
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
820
                      workspace_size, &beta_filter, args2.wdesc.desc(),
821
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
822 823 824
            },
            workspace_size);
      }
825
#endif
826 827 828 829 830

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
847 848 849
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
850 851 852 853 854 855 856 857 858 859 860
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
861 862
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
883

L
liym27 已提交
884
    bool exhaustive_search =
885 886
        FLAGS_cudnn_exhaustive_search || (ctx.HasAttr("exhaustive_search") &&
                                          ctx.Attr<bool>("exhaustive_search"));
L
liym27 已提交
887
    bool deterministic = FLAGS_cudnn_deterministic;
888 889 890 891 892 893
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
894 895 896 897 898 899 900 901 902
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
903
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
919 920 921 922 923 924
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
939 940 941
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
961
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
994 995 996 997 998
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
1010
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
1011
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1012 1013 1014 1015 1016
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1017 1018
        } break;
        case 5: {
1019
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
1020
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1021 1022 1023 1024 1025
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1026 1027
        } break;
        default:
1028 1029
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
1030 1031 1032 1033
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
1034 1035 1036
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
1056
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
1057 1058
    iwo_group = 1;
    c_group = groups;
1059
    groups = 1;
L
liym27 已提交
1060 1061 1062 1063 1064
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    ConvArgs args1{&transformed_ddX,
                   W,
                   &transformed_ddO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{
        &transformed_X, ddW,  &transformed_ddO_channel, strides, padding_common,
        dilations,      dtype};
    ConvArgs args3{&transformed_ddX,
                   dW,
                   &transformed_dO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dX, ddW,  &transformed_dO_channel, strides, padding_common,
        dilations,       dtype};
L
liym27 已提交
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t fwd_algo1 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t fwd_algo2 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
1096 1097 1098 1099 1100 1101 1102 1103
    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
1104
#endif
L
liym27 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1120 1121
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1122

1123 1124
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1125 1126 1127
        workspace_size = search1::GetWorkspaceSize(args1);
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false,
                                     workspace_size, ctx);
1128
#else
L
liym27 已提交
1129
        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1130
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
L
liym27 已提交
1131
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
1132
#endif
L
liym27 已提交
1133 1134 1135 1136 1137 1138 1139 1140
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1141 1142
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1143

1144 1145
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1146 1147 1148 1149
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false,
                                     workspace_size, ctx);
1150
#else
L
liym27 已提交
1151
        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1152
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
L
liym27 已提交
1153 1154
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
1155
#endif
L
liym27 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1165 1166
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1167

1168 1169
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
1170 1171 1172 1173
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo = search3::Find<T>(args3, exhaustive_search, deterministic,
                                     workspace_size, ctx);
1174
#else
L
liym27 已提交
1175 1176
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
1177
          search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1178 1179
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1180
#endif
L
liym27 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1190 1191
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1192

1193 1194
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
1195 1196 1197 1198
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo = search4::Find<T>(args4, exhaustive_search, deterministic,
                                   workspace_size, ctx);
1199
#else
L
liym27 已提交
1200 1201
      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
1202
          search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1203 1204
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1205
#endif
L
liym27 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

1220 1221 1222 1223 1224 1225 1226
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
    // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
    // 0.0f;
    // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
L
liym27 已提交
1227 1228 1229 1230 1231
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
1232
#ifdef PADDLE_WITH_HIP
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args1.idesc.desc(), ddx,
                      args1.wdesc.desc(), w, args1.cdesc.desc(), fwd_algo1,
                      &beta, args1.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1243
#else
1244
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1245 1246
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1247 1248 1249 1250 1251 1252 1253 1254
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1255 1256 1257
              },
              workspace_size);
        }
1258
#endif
L
liym27 已提交
1259 1260
      }
      if (ddW) {
1261
#ifdef PADDLE_WITH_HIP
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        // MIOPEN ONLY support beta to be 0.0f
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args2.idesc.desc(), x, args2.wdesc.desc(),
                      ddw, args2.cdesc.desc(), fwd_algo2, &beta,
                      args2.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1273
#else
1274
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1275 1276
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1277 1278 1279 1280 1281 1282 1283 1284
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1285 1286 1287
              },
              workspace_size);
        }
1288
#endif
L
liym27 已提交
1289 1290 1291 1292 1293 1294
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1295
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1296 1297
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
1298
#ifdef PADDLE_WITH_HIP
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args3.odesc.desc(), transformed_dy_channel,
                    args3.idesc.desc(), ddx, args3.cdesc.desc(), filter_algo,
                    &beta, args3.wdesc.desc(), dw, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1309
#else
1310
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1311 1312
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1313 1314 1315 1316 1317 1318 1319 1320
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1321 1322 1323
            },
            workspace_size);
      }
1324
#endif
L
liym27 已提交
1325 1326 1327 1328
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
1329
#ifdef PADDLE_WITH_HIP
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardData(
                    handle, &alpha, args4.odesc.desc(), transformed_dy_channel,
                    args4.wdesc.desc(), ddw, args4.cdesc.desc(), data_algo,
                    &beta, args4.idesc.desc(), transformed_dx, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1340
#else
1341
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1342 1343
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1344 1345 1346 1347 1348 1349 1350 1351
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1352 1353 1354
            },
            workspace_size);
      }
1355
#endif
L
liym27 已提交
1356

W
wangchaochaohu 已提交
1357 1358 1359 1360
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1361

W
wangchaochaohu 已提交
1362 1363 1364 1365 1366
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1367
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1368 1369
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1370
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1371 1372
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1398 1399 1400 1401 1402 1403 1404 1405
// ROCM has limit thread in depthwise_conv.cu and willl result in accuracy issue
// Use depthwise_conv2d in MIOPEN to resolve this issue
REGISTER_OP_KERNEL(depthwise_conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(depthwise_conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
#else
W
wuhuanzhou 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#if CUDNN_VERSION_MIN(8, 1, 0)
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);

REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);
#else
L
liym27 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

1460 1461 1462 1463 1464
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
W
wuhuanzhou 已提交
1465
#endif
1466

L
liym27 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1479
#endif