test_imperative_recurrent_usage.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle
20 21 22
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
23
from paddle.fluid.framework import _test_eager_guard
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six


class RecurrentTest(fluid.Layer):
    def __init__(self, name_scope):
        super(RecurrentTest, self).__init__(name_scope)

    def forward(self, in1, in2):
        out = fluid.layers.mul(in1, in2)
        sum_out = fluid.layers.reduce_sum(out)
        return sum_out, out


class TestRecurrentFeed(unittest.TestCase):
    def test_recurrent_feed(self):

        seed = 90
        original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
        original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
        with fluid.dygraph.guard():
48
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
49 50 51 52
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            original_in1 = to_variable(original_np1)
            original_in2 = to_variable(original_np2)
53 54
            original_in1.stop_gradient = False
            original_in2.stop_gradient = False
55 56 57 58 59 60 61
            rt = RecurrentTest("RecurrentTest")

            for i in range(3):
                sum_out, out = rt(original_in1, original_in2)
                original_in1 = out
                sum_out_value = sum_out.numpy()
                sum_out.backward()
62
                dyout = out.gradient()
63
                original_in1.stop_gradient = True
64
                rt.clear_gradients()
65
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
66

67
        with fluid.dygraph.guard():
68
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
            with _test_eager_guard():
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                original_in1 = to_variable(original_np1)
                original_in2 = to_variable(original_np2)
                original_in1.stop_gradient = False
                original_in2.stop_gradient = False
                rt = RecurrentTest("RecurrentTest")

                for i in range(3):
                    sum_out, out = rt(original_in1, original_in2)
                    original_in1 = out
                    eager_sum_out_value = sum_out.numpy()
                    sum_out.backward()
                    eager_dyout = out.gradient()
                    original_in1.stop_gradient = True
                    rt.clear_gradients()
86
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
87

88 89 90 91 92 93 94 95 96 97 98 99 100
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            in1 = fluid.layers.data(
                name="inp1", shape=[2, 2], append_batch_size=False)
            in2 = fluid.layers.data(
                name="inp2", shape=[2, 2], append_batch_size=False)
            rt1 = RecurrentTest("RecurrentTest")
            static_sum_out, static_out = rt1(in1, in2)
            fluid.backward.append_backward(static_sum_out)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

101 102 103
            static_dout = fluid.default_main_program().block(
                0)._find_var_recursive(static_out.name + "@GRAD")
            fetch_list = [static_sum_out, static_out, static_dout]
104 105 106 107 108 109 110 111
            for i in range(3):
                out = exe.run(
                    fluid.default_main_program(),
                    feed={"inp1": original_np1,
                          "inp2": original_np2},
                    fetch_list=fetch_list)
                static_out_value = out[1]
                static_sum_out = out[0]
112
                static_dout = out[2]
113 114 115
                original_np1 = static_out_value

        self.assertTrue(np.array_equal(static_sum_out, sum_out_value))
116
        self.assertTrue(np.array_equal(static_sum_out, eager_sum_out_value))
117
        self.assertTrue(np.array_equal(static_dout, dyout))
118
        self.assertTrue(np.array_equal(static_dout, eager_dyout))
119 120 121


if __name__ == '__main__':
122
    paddle.enable_static()
123
    unittest.main()