test_multiply.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest

18 19 20 21 22
import numpy as np

import paddle
import paddle.tensor as tensor
from paddle.static import Program, program_guard
W
wanghuancoder 已提交
23
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
24 25


26 27
class TestMultiplyApi(unittest.TestCase):
    def _run_static_graph_case(self, x_data, y_data):
28
        with program_guard(Program(), Program()):
29
            paddle.enable_static()
30 31 32 33
            x = paddle.static.data(
                name='x', shape=x_data.shape, dtype=x_data.dtype)
            y = paddle.static.data(
                name='y', shape=y_data.shape, dtype=y_data.dtype)
34
            res = tensor.multiply(x, y)
35

36 37 38 39
            place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            outs = exe.run(paddle.static.default_main_program(),
40 41 42 43 44 45
                           feed={'x': x_data,
                                 'y': y_data},
                           fetch_list=[res])
            res = outs[0]
            return res

46
    def _run_dynamic_graph_case(self, x_data, y_data):
47
        paddle.disable_static()
48 49
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
50
        res = paddle.multiply(x, y)
51 52
        return res.numpy()

W
wanghuancoder 已提交
53
    def func_test_multiply(self):
54
        np.random.seed(7)
55

56 57 58
        # test static computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
59
        res = self._run_static_graph_case(x_data, y_data)
60 61
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

62 63 64
        # test static computation graph: 2-d array
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(2, 500)
65
        res = self._run_static_graph_case(x_data, y_data)
66 67
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

68 69 70
        # test static computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
71
        res = self._run_static_graph_case(x_data, y_data)
72 73
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

W
will-jl944 已提交
74 75 76 77 78 79
        # test static computation graph: boolean
        x_data = np.random.choice([True, False], size=[200])
        y_data = np.random.choice([True, False], size=[200])
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

80 81 82
        # test dynamic computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
83
        res = self._run_dynamic_graph_case(x_data, y_data)
84 85
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

86 87 88
        # test dynamic computation graph: 2-d array
        x_data = np.random.rand(20, 50)
        y_data = np.random.rand(20, 50)
89
        res = self._run_dynamic_graph_case(x_data, y_data)
90 91
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

92 93 94
        # test dynamic computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
95
        res = self._run_dynamic_graph_case(x_data, y_data)
96 97
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

W
will-jl944 已提交
98 99 100 101 102 103
        # test dynamic computation graph: boolean
        x_data = np.random.choice([True, False], size=[200])
        y_data = np.random.choice([True, False], size=[200])
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

W
wanghuancoder 已提交
104 105 106 107 108
    def test_multiply(self):
        with _test_eager_guard():
            self.func_test_multiply()
        self.func_test_multiply()

109 110

class TestMultiplyError(unittest.TestCase):
W
wanghuancoder 已提交
111
    def func_test_errors(self):
112
        # test static computation graph: dtype can not be int8
113
        paddle.enable_static()
114
        with program_guard(Program(), Program()):
115 116
            x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
            y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
117 118 119 120
            self.assertRaises(TypeError, tensor.multiply, x, y)

        # test static computation graph: inputs must be broadcastable 
        with program_guard(Program(), Program()):
121 122
            x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64)
            y = paddle.static.data(name='y', shape=[20], dtype=np.float64)
123
            self.assertRaises(ValueError, tensor.multiply, x, y)
124 125 126

        np.random.seed(7)
        # test dynamic computation graph: dtype can not be int8
127
        paddle.disable_static()
128 129
        x_data = np.random.randn(200).astype(np.int8)
        y_data = np.random.randn(200).astype(np.int8)
130 131
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
132
        self.assertRaises(RuntimeError, paddle.multiply, x, y)
133 134 135 136

        # test dynamic computation graph: inputs must be broadcastable
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
137 138
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
139
        self.assertRaises(ValueError, paddle.multiply, x, y)
140

141 142 143 144 145
        # test dynamic computation graph: inputs must be broadcastable(python)
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
146
        self.assertRaises(ValueError, paddle.multiply, x, y)
147

148
        # test dynamic computation graph: dtype must be same	
149 150 151 152
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
153
        self.assertRaises(ValueError, paddle.multiply, x, y)
154

155 156 157 158
        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        y = paddle.to_tensor(y_data)
159
        self.assertRaises(ValueError, paddle.multiply, x_data, y)
160 161 162 163 164

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
165
        self.assertRaises(ValueError, paddle.multiply, x, y_data)
166 167 168 169 170

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
171
        self.assertRaises(ValueError, paddle.multiply, x, y_data)
172 173 174 175 176

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
177
        self.assertRaises(ValueError, paddle.multiply, x_data, y)
178 179 180 181

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
182
        self.assertRaises(ValueError, paddle.multiply, x_data, y_data)
183

W
wanghuancoder 已提交
184 185 186 187 188
    def test_errors(self):
        with _test_eager_guard():
            self.func_test_errors()
        self.func_test_errors()

189 190 191

if __name__ == '__main__':
    unittest.main()