pool_mkldnn_op.cc 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22
using framework::DataLayout;
using mkldnn::memory;
23
using mkldnn::pooling_backward;
24 25 26 27 28
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
29 30 31

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
M
mozga-intel 已提交
32 33 34 35 36 37 38
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
39 40 41 42 43 44 45 46 47 48
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
         dims2str(paddings) + pooling_type + suffix;
}

49 50
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                      int padding, int stride) {
51 52 53
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

54 55 56 57 58 59
static inline void CorrectOutputSize(
    const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
    const std::vector<int>& kernel_size, const std::vector<int>& paddings,
    const std::vector<int>& strides,
    std::vector<int>& right_bot_padding) {  // NOLINT
  for (size_t i = 0; i < right_bot_padding.size(); i++) {
60 61 62 63 64 65 66 67
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

68 69 70 71 72 73
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
X
xiaolil1 已提交
74

75 76 77 78 79 80 81
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

82 83 84
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

110 111 112
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

113 114 115 116 117 118 119 120
    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Output("Out"));
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
121

122 123 124
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
125 126 127 128 129 130 131
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
132
      auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
133
          src_tz, platform::MKLDNNGetDataType<T>(), input_format);
134

135 136 137 138
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
X
xiaolil1 已提交
139
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
140
                                            mkldnn::memory::format::any);
141

142
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
143 144 145
          CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
                              padding_right_bottom, ksize, pooling_type,
                              mkldnn_engine, ceil_mode);
146 147 148 149 150 151 152 153 154 155

      // save pool_pd into global device context to be referred in backward path
      dev_ctx.SetBlob(key_pool_pd, pool_pd);

      std::shared_ptr<mkldnn::memory> workspace_memory =
          CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

      // save pool_workspace_memory to be referred in backward path
      dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

156 157 158 159
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
160

161 162 163 164 165 166
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

      pool_p = std::make_shared<pooling_forward>(*pool_pd, *(src_memory.get()),
                                                 *(dst_memory.get()),
                                                 *workspace_memory);
167 168

      dev_ctx.SetBlob(key_pool_p, pool_p);
169 170 171

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
172 173 174 175 176 177 178 179 180 181
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
182
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
183
      pool_dst_memory_p->set_data_handle(output_data);
184 185 186 187

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
188
    }
189 190

    // push primitive to stream and wait until it's executed
191
    std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
192 193 194 195
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
196 197 198 199 200
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
201 202 203 204
      const std::vector<int>& stride, const std::vector<int>& padding_left_top,
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
      bool ceil_mode) const {
205 206 207 208
    auto pool_desc = mkldnn::pooling_forward::desc(
        mkldnn::prop_kind::forward,
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
209 210
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
211 212 213 214 215 216 217 218 219 220 221 222

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
223 224 225 226
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

244 245 246 247 248 249 250
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
269
    memory::format in_x_grad_format{memory::format::format_undef};
270 271 272 273 274 275

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

276 277 278 279 280 281 282
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
    const std::string key = gethash(diff_src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Input("Out"));
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
283 284
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
285 286 287
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
303 304 305
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
306 307 308 309 310
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
311 312 313 314 315 316
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
317
      auto workspace_memory = std::static_pointer_cast<memory>(
318 319 320 321
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

322 323 324
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
325 326 327 328 329 330 331 332 333

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

350
      pool_bwd_p = std::make_shared<pooling_backward>(
351 352
          pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory,
          *(diff_src_memory));
353
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
354

355 356
    } else {
      // Primitives already exist
357
      diff_src_memory = std::static_pointer_cast<memory>(
358
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
359
      PADDLE_ENFORCE(diff_src_memory != nullptr,
360
                     "Fail to find pooling src mem_p in device context");
361
      diff_dst_memory = std::static_pointer_cast<memory>(
362
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
363
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
364
                     "Fail to find pooling dst mem_p in device context");
365 366 367 368 369 370 371 372 373 374 375 376

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
377
    }
378

379 380 381 382
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

383
    // push primitive to stream and wait until it's executed
384 385 386 387 388
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
    pipeline.push_back(*(pool_bwd_p.get()));
389
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
390 391 392

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
393 394 395 396 397 398
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

399 400
namespace ops = paddle::operators;

401
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
402
                   ops::PoolMKLDNNOpKernel<float>);
403
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
404
                   ops::PoolMKLDNNGradOpKernel<float>);