scale_api.h 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "glog/logging.h"
18 19 20
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/allocator.h"
21
#include "paddle/phi/common/int_array.h"
22 23 24 25 26
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/kernels/scale_kernel.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace experimental {

PADDLE_API Tensor scale_kernel_context(const Tensor& x,
                                       const Scalar& scale,
                                       float bias,
                                       bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
43
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
44 45 46 47 48 49 50 51 52 53
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
54
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
55
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
56
  const auto& kernel = kernel_result.kernel;
57 58 59 60 61
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
62
  auto kernel_context = phi::KernelContext(dev_ctx);
63

64
  auto dense_x = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
65
  kernel_context.EmplaceBackInput(dense_x.get());
66

67
  kernel_context.EmplaceBackAttr(phi::Scalar(scale));
68 69 70
  kernel_context.EmplaceBackAttr(bias);
  kernel_context.EmplaceBackAttr(bias_after_scale);

Z
zyfncg 已提交
71
  auto dense_out = std::make_shared<phi::DenseTensor>();
72 73
  phi::MetaTensor meta_out(dense_out.get());
  phi::UnchangedInferMeta(*dense_x, &meta_out);
74
  kernel_context.EmplaceBackOutput(dense_out.get());
75 76 77 78 79 80 81 82 83

  Tensor out;
  out.set_impl(dense_out);

  kernel(&kernel_context);
  return out;
}

static void ScaleCPU(DataType kernel_dtype,
84 85
                     const phi::CPUContext& dev_ctx,
                     const phi::DenseTensor& x,
86 87 88
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
89
                     phi::DenseTensor* dense_out) {
90
  switch (kernel_dtype) {
91 92 93
    case phi::DataType::FLOAT64: {
      phi::ScaleKernel<double>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
94 95
      break;
    }
96 97 98
    case phi::DataType::FLOAT32: {
      phi::ScaleKernel<float>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
99 100
      break;
    }
101 102 103
    case phi::DataType::BFLOAT16: {
      phi::ScaleKernel<phi::dtype::bfloat16>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
104 105
      break;
    }
106 107 108
    case phi::DataType::INT64: {
      phi::ScaleKernel<int64_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
109 110
      break;
    }
111 112 113
    case phi::DataType::INT32: {
      phi::ScaleKernel<int32_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
114 115
      break;
    }
116 117 118
    case phi::DataType::INT16: {
      phi::ScaleKernel<int16_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
119 120
      break;
    }
121 122 123
    case phi::DataType::INT8: {
      phi::ScaleKernel<int8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
124 125
      break;
    }
126 127 128
    case phi::DataType::UINT8: {
      phi::ScaleKernel<uint8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
129 130 131
      break;
    }
    default: {
132
      PADDLE_THROW(phi::errors::Fatal(
133 134 135 136 137 138 139 140 141
          "Detected unsupported data type."
          "Only Float64, Float32, BFloat16, Int64, Int32, Int16, Int8, UInt8 "
          "are supported for now."));
      break;
    }
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
142
static void ScaleGPU(DataType kernel_dtype,
143 144
                     const phi::GPUContext& dev_ctx,
                     const phi::DenseTensor& x,
145 146 147
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
148
                     phi::DenseTensor* dense_out) {
149
  switch (kernel_dtype) {
150 151 152
    case phi::DataType::FLOAT64: {
      phi::ScaleKernel<double>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
153 154
      break;
    }
155 156 157
    case phi::DataType::FLOAT32: {
      phi::ScaleKernel<float>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
158 159
      break;
    }
160 161 162
    case phi::DataType::FLOAT16: {
      phi::ScaleKernel<phi::dtype::float16>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
163 164
      break;
    }
165 166 167
    case phi::DataType::INT64: {
      phi::ScaleKernel<int64_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
168 169
      break;
    }
170 171 172
    case phi::DataType::INT32: {
      phi::ScaleKernel<int32_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
173 174
      break;
    }
175 176 177
    case phi::DataType::INT16: {
      phi::ScaleKernel<int16_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
178 179
      break;
    }
180 181 182
    case phi::DataType::INT8: {
      phi::ScaleKernel<int8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
183 184
      break;
    }
185 186 187
    case phi::DataType::UINT8: {
      phi::ScaleKernel<uint8_t>(
          dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out);
188 189 190
      break;
    }
    default: {
191
      PADDLE_THROW(phi::errors::Fatal(
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
          "Detected unsupported data type."
          "Only Float64, Float32, Float16, Int64, Int32, Int16, Int8, UInt8 "
          "are "
          "supported for now."));
      break;
    }
  }
}
#endif

Tensor scale_switch_case(const Tensor& x,
                         const Scalar& scale,
                         float bias,
                         bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
214
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
215 216 217 218 219 220 221 222 223 224
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
225
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
226
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
227
  const auto& kernel = kernel_result.kernel;
228 229 230 231 232 233
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

234
  auto dense_x = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
235

Z
zyfncg 已提交
236
  auto dense_out = std::make_shared<phi::DenseTensor>();
237 238
  phi::MetaTensor meta_out(dense_out.get());
  phi::UnchangedInferMeta(*dense_x, &meta_out);
239 240 241 242 243 244 245

  Tensor out;
  out.set_impl(dense_out);

  switch (kernel_backend) {
    case Backend::CPU:
      ScaleCPU(kernel_data_type,
246
               static_cast<const phi::CPUContext&>(*dev_ctx),
247 248 249 250 251 252 253
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
      break;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
254 255
    case Backend::GPU:
      ScaleGPU(kernel_data_type,
256
               static_cast<const phi::GPUContext&>(*dev_ctx),
257 258 259 260 261
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
262 263 264
      break;
#endif
    default:
265
      PADDLE_THROW(phi::errors::Fatal(
266 267 268 269 270 271 272 273 274 275 276
          "Detected unsupported backend."
          "Only CPU and CUDA Backend are supported for now."
          "Please double check if your backend falls into the above two "
          "categories."));
  }

  return out;
}

}  // namespace experimental
}  // namespace paddle