voc2012.py 4.5 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import tarfile
import numpy as np
from PIL import Image

22
import paddle
K
Kaipeng Deng 已提交
23
from paddle.io import Dataset
24
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
25 26 27 28 29 30

__all__ = ["VOC2012"]

VOC_URL = 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/\
VOCtrainval_11-May-2012.tar'

31
VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd'
K
Kaipeng Deng 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt'
DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg'
LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png'

CACHE_DIR = 'voc2012'

MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"}


class VOC2012(Dataset):
    """
    Implementation of `VOC2012 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/>`_ dataset

    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Examples:

        .. code-block:: python

56 57
            import paddle
            from paddle.vision.datasets import VOC2012
K
Kaipeng Deng 已提交
58

59 60 61
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
62

63 64
                def forward(self, image, label):
                    return paddle.sum(image), label
K
Kaipeng Deng 已提交
65

66
            paddle.disable_static()
K
Kaipeng Deng 已提交
67

68
            voc2012 = VOC2012(mode='train')
K
Kaipeng Deng 已提交
69

70 71 72 73
            for i in range(10):
                image, label= voc2012[i]
                image = paddle.cast(paddle.to_tensor(image), 'float32')
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
74

75 76 77
                model = SimpleNet()
                image, label= model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
                 download=True):
        assert mode.lower() in ['train', 'valid', 'test'], \
            "mode should be 'train', 'valid' or 'test', but got {}".format(mode)
        self.flag = MODE_FLAG_MAP[mode.lower()]

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, VOC_URL, VOC_MD5, CACHE_DIR, download)
        self.transform = transform

        # read dataset into memory
        self._load_anno()

100 101
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def _load_anno(self):
        self.name2mem = {}
        self.data_tar = tarfile.open(self.data_file)
        for ele in self.data_tar.getmembers():
            self.name2mem[ele.name] = ele

        set_file = SET_FILE.format(self.flag)
        sets = self.data_tar.extractfile(self.name2mem[set_file])

        self.data = []
        self.labels = []

        for line in sets:
            line = line.strip()
            data = DATA_FILE.format(line.decode('utf-8'))
            label = LABEL_FILE.format(line.decode('utf-8'))
            self.data.append(data)
            self.labels.append(label)

    def __getitem__(self, idx):
        data_file = self.data[idx]
        label_file = self.labels[idx]

        data = self.data_tar.extractfile(self.name2mem[data_file]).read()
        label = self.data_tar.extractfile(self.name2mem[label_file]).read()
        data = Image.open(io.BytesIO(data))
        label = Image.open(io.BytesIO(label))
        data = np.array(data)
        label = np.array(label)
        if self.transform is not None:
            data = self.transform(data)
133
        return data.astype(self.dtype), label.astype(self.dtype)
K
Kaipeng Deng 已提交
134 135 136

    def __len__(self):
        return len(self.data)
137 138 139 140

    def __del__(self):
        if self.data_tar:
            self.data_tar.close()