test_trt_convert_bitwise_not.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import Any, Dict, List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertActivationTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        self.trt_param.workspace_size = 1073741824

        def generate_input1(dims, batch, attrs: List[Dict[str, Any]]):
            if dims == 1:
                return np.random.random([32]).astype(np.bool8)
            elif dims == 2:
                return np.random.random([3, 32]).astype(np.int8)
            elif dims == 3:
                return np.random.random([3, 32, 32]).astype(np.int32)
            else:
                return np.random.random([batch, 3, 32, 32]).astype(np.int64)

        for dims in [1, 2, 3, 4]:
            for batch in [1, 4]:
                self.dims = dims
                dics = [{}]

                ops_config = [
                    {
                        "op_type": 'bitwise_not',
                        "op_inputs": {"X": ["input_data"]},
                        "op_outputs": {"Out": ["output_data"]},
                        "op_attrs": dics[0],
                    }
                ]
                ops = self.generate_op_config(ops_config)

                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
                        "input_data": TensorConfig(
                            data_gen=partial(generate_input1, dims, batch, dics)
                        )
                    },
                    outputs=["output_data"],
                )
                yield program_config

    def sample_predictor_configs(
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
        def generate_dynamic_shape(attrs):
            if self.dims == 1:
                self.dynamic_shape.min_input_shape = {"input_data": [1]}
                self.dynamic_shape.max_input_shape = {"input_data": [64]}
                self.dynamic_shape.opt_input_shape = {"input_data": [32]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 16]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 32]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 32]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 16]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 32]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 32, 32]}
            else:
                self.dynamic_shape.min_input_shape = {
                    "input_data": [1, 3, 16, 16]
                }
                self.dynamic_shape.max_input_shape = {
                    "input_data": [4, 3, 32, 32]
                }
                self.dynamic_shape.opt_input_shape = {
                    "input_data": [1, 3, 32, 32]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            ver = paddle_infer.get_trt_compile_version()
            trt_version = ver[0] * 1000 + ver[1] * 100 + ver[2] * 10
            if trt_version >= 8400:
                if self.dims == 1 and not dynamic_shape:
                    return 0, 3
                return 1, 2
            else:
                if (self.dims == 1 and not dynamic_shape) or (
                    program_config.inputs['input_data'].dtype
                    in ['bool', 'int8', 'uint8']
                ):
                    return 0, 3
                return 1, 2

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
        ), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False
        ), 1e-5

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, True
        ), 1e-5

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()