gru_op.h 10.4 KB
Newer Older
G
guosheng 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include "paddle/operators/math/detail/activation_functions.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

G
guosheng 已提交
28 29 30
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
31 32
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
G
guosheng 已提交
33 34
                             const framework::Tensor& src, const size_t* index,
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
35
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
36 37 38 39
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index, *dst, indexed_src);
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
G
guosheng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
Q
QI JUN 已提交
64 65
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
66
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
67 68

    if (bias) {
Q
QI JUN 已提交
69
      math::RowwiseAdd<DeviceContext, T> add_bias;
70
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
71 72
    }

73
    int frame_size = hidden_dims[1];
74
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
75 76
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
77
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
78 79 80 81 82 83
    Tensor ordered_h0;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
84 85 86
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
G
guosheng 已提交
87
      gru_value.prev_out_value = ordered_h0.data<T>();
G
guosheng 已提交
88
    } else {
G
guosheng 已提交
89
      gru_value.prev_out_value = nullptr;
G
guosheng 已提交
90
    }
G
guosheng 已提交
91 92
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
93 94 95 96
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
97 98 99 100 101 102 103 104
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
G
guosheng 已提交
105 106 107
      gru_value.output_value = hidden_t.data<T>();
      gru_value.gate_value = gate_t.data<T>();
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
Q
QI JUN 已提交
108
      math::GRUUnitFunctor<DeviceContext, T>::compute(
109 110
          dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
111
      gru_value.prev_out_value = gru_value.output_value;
G
guosheng 已提交
112 113
    }

Q
QI JUN 已提交
114
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
115
    batch_hidden->set_lod(batch_gate->lod());
116
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
117 118 119 120 121 122 123
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

Q
QI JUN 已提交
124
template <typename DeviceContext, typename T>
G
guosheng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
149
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
150 151 152 153 154
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
155 156
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
157 158 159
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
160

G
guosheng 已提交
161 162 163
    Tensor ordered_h0, ordered_h0_grad;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
Q
QI JUN 已提交
164 165
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
166 167 168
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
169 170
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
171 172
    }

G
guosheng 已提交
173 174
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
175
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
176

177
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
178 179
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
180 181
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

182
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
183
    if (weight_grad) {
G
guosheng 已提交
184
      gru_grad.gate_weight_grad =
G
guosheng 已提交
185
          weight_grad->mutable_data<T>(context.GetPlace());
186
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
187
      gru_grad.state_weight_grad =
G
guosheng 已提交
188 189
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
190 191
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
192 193 194 195
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
196 197 198 199
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
200 201 202 203 204 205
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
206
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
207
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
208
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
209 210

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
211
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
212
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
213
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
214 215
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
216
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
217
      if (n == 0) {
G
guosheng 已提交
218 219
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
220
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
221 222 223
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
224
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
225
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
226
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
227 228
      }

Q
QI JUN 已提交
229
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
230 231
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
232 233 234
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
235
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
236
      batch_gate_grad.set_lod(batch_gate->lod());
237
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
238 239 240
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
241
      math::ColwiseSum<DeviceContext, T> col_sum;
242
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
243
    }
G
guosheng 已提交
244
    if (h0 && h0_grad) {
Q
QI JUN 已提交
245 246
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
247
    }
G
guosheng 已提交
248 249 250 251 252 253 254 255 256
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle