test_understand_sentiment.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import paddle.v2.fluid as fluid
17 18
import paddle.v2 as paddle
import contextlib
19
import math
20
import numpy as np
21
import sys
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
    emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
    adam_optimizer.minimize(avg_cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
47
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
48 49


Y
Yu Yang 已提交
50 51 52
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
53 54 55 56 57 58
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

59
    emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
Q
QI JUN 已提交
60 61 62
    # add bias attr

    # TODO(qijun) linear act
63 64
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
65 66 67 68

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
69 70
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
71 72 73
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

74 75
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
76

77 78 79 80 81 82
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
Y
Yu Yang 已提交
83
    adam_optimizer.minimize(avg_cost)
84
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
85
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
86

87

88 89 90 91 92 93
def create_random_lodtensor(lod, place, low, high):
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res
94

95 96

def train(word_dict, net_method, use_cuda, save_dirname=None):
97 98
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
99 100 101
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
102 103 104
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
105
    cost, acc_out, prediction = net_method(
Y
Yu Yang 已提交
106
        data, label, input_dim=dict_dim, class_dim=class_dim)
Q
QI JUN 已提交
107 108 109 110 111

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
112
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
113
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
114
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
115

116
    exe.run(fluid.default_startup_program())
Q
QI JUN 已提交
117 118 119

    for pass_id in xrange(PASS_NUM):
        for data in train_data():
Y
Yu Yang 已提交
120 121 122
            cost_val, acc_val = exe.run(fluid.default_main_program(),
                                        feed=feeder.feed(data),
                                        fetch_list=[cost, acc_out])
123 124
            print("cost=" + str(cost_val) + " acc=" + str(acc_val))
            if cost_val < 0.4 and acc_val > 0.8:
125 126 127
                if save_dirname is not None:
                    fluid.io.save_inference_model(save_dirname, ["words"],
                                                  prediction, exe)
128
                return
129 130
            if math.isnan(float(cost_val)):
                sys.exit("got NaN loss, training failed.")
131 132 133 134
    raise AssertionError("Cost is too large for {0}".format(
        net_method.__name__))


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

    lod = [0, 4, 10]
    word_dict = paddle.dataset.imdb.word_dict()
    tensor_words = create_random_lodtensor(
        lod, place, low=0, high=len(word_dict) - 1)

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    assert feed_target_names[0] == "words"
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_words},
                      fetch_list=fetch_targets,
                      return_numpy=False)
    print(results[0].lod())
    np_data = np.array(results[0])
    print("Inference Shape: ", np_data.shape)
    print("Inference results: ", np_data)


def main(word_dict, net_method, use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "understand_sentiment.inference.model"

    train(word_dict, net_method, use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=convolution_net, use_cuda=False)

    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False)

    def test_conv_gpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=convolution_net, use_cuda=True)

    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True)
Q
QI JUN 已提交
207 208 209


if __name__ == '__main__':
210
    unittest.main()