expand_as_v2_op.cc 4.7 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_as_v2_op.h"
13

L
lilong12 已提交
14 15
#include <memory>
#include <vector>
16

17
#include "paddle/fluid/framework/infershape_utils.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19
#include "paddle/phi/infermeta/binary.h"
L
lilong12 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandAsV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
29 30 31 32 33 34 35

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
L
lilong12 已提交
36 37 38 39 40 41 42 43
};

class ExpandAsV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
44 45 46 47
    AddInput("Y",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "Expand X according to the shape of Y.")
        .AsDispensable();
L
lilong12 已提交
48 49 50 51 52 53
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
54 55 56
    AddAttr<std::vector<int>>("target_shape",
                              "Expand shape for each dimension.")
        .SetDefault({});
L
lilong12 已提交
57
    AddComment(R"DOC(
58
Expand the input to the given shape.
L
lilong12 已提交
59 60 61 62 63 64 65 66 67 68 69
)DOC");
  }
};

class ExpandAsV2GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandAsV2Grad");
70 71 72 73
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "ExpandAsV2Grad");
L
lilong12 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class ExpandAsV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_as_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandAsV2GradNoNeedBufVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
111 112
DECLARE_INFER_SHAPE_FUNCTOR(expand_as_v2,
                            ExpandAsInferShapeFunctor,
113
                            PD_INFER_META(phi::ExpandAsInferMeta));
114 115 116
REGISTER_OPERATOR(expand_as_v2,
                  ops::ExpandAsV2Op,
                  ops::ExpandAsV2OpMaker,
L
lilong12 已提交
117
                  ops::ExpandAsV2GradOpMaker<paddle::framework::OpDesc>,
118 119
                  ops::ExpandAsV2GradOpMaker<paddle::imperative::OpBase>,
                  ExpandAsInferShapeFunctor);
120 121
REGISTER_OPERATOR(expand_as_v2_grad,
                  ops::ExpandAsV2GradOp,
L
lilong12 已提交
122
                  ops::ExpandAsV2GradNoNeedBufVarsInferer);
123 124

REGISTER_OP_VERSION(expand_as_v2)
125 126 127
    .AddCheckpoint(R"ROC(fix expand_as_v2 and add new input [Y])ROC",
                   paddle::framework::compatible::OpVersionDesc().NewInput(
                       "Y", "Expand X according to the shape of Y"));