activation_compute.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename Functor>
void Activate(const platform::CPUDeviceContext& context,
              const framework::LoDTensor* X, framework::LoDTensor* Out) {
  using T = typename Functor::ELEMENT_TYPE;
  auto* place = context.eigen_device();
  auto x =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(X));
  auto out =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(Out));
  Functor()(*place, x, out);
}

template <typename Functor>
void ActivateGrad(const platform::CPUDeviceContext& context,
                  const framework::LoDTensor* X,
                  const framework::LoDTensor* Out,
                  const framework::LoDTensor* Out_grad,
                  framework::LoDTensor* X_grad) {
  using T = typename Functor::ELEMENT_TYPE;
  auto* place = context.eigen_device();
  auto x =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(X));
  auto out =
      framework::EigenVector<T>::Flatten(paddle::operators::detail::Ref(Out));
  auto x_grad = framework::EigenVector<T>::Flatten(
      paddle::operators::detail::Ref(X_grad));
  auto out_grad = framework::EigenVector<T>::Flatten(
      paddle::operators::detail::Ref(Out_grad));
  Functor()(*place, x, out, out_grad, x_grad);
}

template <typename T>
class SquareCompute : public KernelLite<TARGET(kHost), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationParam;

  void Run() override {
T
tensor-tang 已提交
63
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    auto& param = *param_.get_mutable<operators::ActivationParam>();
    CHECK(context.x86_device_context);

    param.Out->template mutable_data<T>();
    Activate<paddle::operators::SquareFunctor<T>>(*context.x86_device_context,
                                                  &param.X->raw_tensor(),
                                                  &param.Out->raw_tensor());
  }

  // TargetType target() const override;
  // PrecisionType precision() const override;

  virtual ~SquareCompute() = default;
};

template <typename T>
class SquareGradCompute : public KernelLite<TARGET(kHost), PRECISION(kFloat)> {
 public:
  using param_t = operators::ActivationGradParam;

  void Run() override {
T
tensor-tang 已提交
85
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    auto& param = *param_.get_mutable<operators::ActivationGradParam>();
    CHECK(context.x86_device_context);
    param.X_grad->template mutable_data<T>();

    ActivateGrad<paddle::operators::SquareGradFunctor<T>>(
        *context.x86_device_context, &param.X->raw_tensor(),
        &param.Out->raw_tensor(), &param.Out_grad->raw_tensor(),
        &param.X_grad->raw_tensor());
  }

  // TargetType target() const override;
  // PrecisionType precision() const override;

  virtual ~SquareGradCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// float
REGISTER_LITE_KERNEL(square, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::SquareCompute<float>, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();

REGISTER_LITE_KERNEL(square_grad, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::SquareGradCompute<float>, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();