fc_compute_test.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
#include <gtest/gtest.h>
#include <vector>
T
tensor-tang 已提交
18
#include "paddle/fluid/lite/arm/math/funcs.h"
19 20 21 22 23 24 25
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
TEST(fc_arm, retrive_op) {
  auto fc =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("fc");
  ASSERT_FALSE(fc.empty());
  ASSERT_TRUE(fc.front());
}

TEST(fc_arm, init) {
  FcCompute fc;
  ASSERT_EQ(fc.precision(), PRECISION(kFloat));
  ASSERT_EQ(fc.target(), TARGET(kARM));
}

TEST(fc_arm, compare_test) {
  lite::Tensor x, w, b, out, ref;
  constexpr int batch_size = 2;
42
  x.Resize({batch_size, 3});
T
tensor-tang 已提交
43
  w.Resize({3, 4});
44 45
  b.Resize({1, 4});
  out.Resize({batch_size, 4});
T
tensor-tang 已提交
46
  ref.Resize({batch_size, 4});
47 48 49 50 51

  auto x_data = x.mutable_data<float>();
  auto w_data = w.mutable_data<float>();
  auto b_data = b.mutable_data<float>();
  auto out_data = out.mutable_data<float>();
T
tensor-tang 已提交
52
  auto ref_data = ref.mutable_data<float>();
53

T
tensor-tang 已提交
54 55 56 57 58 59 60 61
  for (int64_t i = 0; i < x.dims().product(); i++) {
    x_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < w.dims().product(); i++) {
    w_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < b.dims().product(); i++) {
    b_data[i] = static_cast<float>(i);
62 63
  }

T
tensor-tang 已提交
64 65 66 67 68 69 70
  // TODO(TJ): enable bias soon
  b_data = nullptr;
  lite::arm::math::fc_compute_eigen(x_data, batch_size, 3,  //
                                    w_data, 3, 4,           //
                                    b_data, ref_data);

  // fc compute kernel
71
  FcCompute fc;
T
tensor-tang 已提交
72
  operators::FcParam param;
73

T
tensor-tang 已提交
74 75 76 77 78 79
  param.in_num_col_dims = 1;
  param.input = &x;
  param.w = &w;
  param.bias = nullptr;
  param.output = &out;
  param.in_mat_dims = x.dims();
80

T
tensor-tang 已提交
81 82 83 84 85 86
  DeviceInfo::init_info();
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<ARMContext>();
  fc.SetParam(param);
  fc.SetContext(std::move(ctx));
  fc.Run();
87

T
tensor-tang 已提交
88 89 90 91
  VLOG(3) << "output vs ref";
  for (int i = 0; i < out.dims().product(); i++) {
    VLOG(3) << out_data[i] << " vs " << ref_data[i];
  }
92

T
tensor-tang 已提交
93 94 95
  for (int i = 0; i < out.dims().product(); ++i) {
    EXPECT_NEAR(out_data[i], ref_data[i], 1e-5);
  }
96 97
}

T
tensor-tang 已提交
98
TEST(fc_arm, num_col_dims) {
99 100 101 102 103 104 105 106
  FcCompute fc;
  operators::FcParam param;

  lite::Tensor x;
  lite::Tensor w;
  lite::Tensor bias;
  lite::Tensor output;

T
tensor-tang 已提交
107 108 109 110
  x.Resize({1, 2, 3});
  w.Resize({3, 4});
  bias.Resize({1, 4});
  output.Resize({2, 4});
111 112 113 114 115 116

  auto* x_data = x.mutable_data<float>();
  auto* w_data = w.mutable_data<float>();
  auto* bias_data = bias.mutable_data<float>();
  auto* output_data = output.mutable_data<float>();

T
tensor-tang 已提交
117 118 119 120 121 122 123 124 125 126 127 128
  for (int64_t i = 0; i < x.dims().product(); i++) {
    x_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < w.dims().product(); i++) {
    w_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < bias.dims().product(); i++) {
    bias_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < output.dims().product(); i++) {
    output_data[i] = static_cast<float>(i);
  }
129 130 131 132 133 134 135 136

  param.in_num_col_dims = 2;
  param.input = &x;
  param.w = &w;
  param.bias = &bias;
  param.output = &output;
  param.in_mat_dims = x.dims();

T
tensor-tang 已提交
137 138 139 140
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<ARMContext>();
  DeviceInfo::init_info();

141
  fc.SetParam(param);
T
tensor-tang 已提交
142
  fc.SetContext(std::move(ctx));
143 144 145 146 147 148 149 150 151
  fc.Run();
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);