fc_compute.cc 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
T
tensor-tang 已提交
16
#include "paddle/fluid/lite/arm/math/funcs.h"
17 18 19 20 21 22 23 24 25 26
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void FcCompute::Run() {
  auto& param = this->Param<operators::FcParam>();
T
tensor-tang 已提交
27 28
  auto x_dims = param.input->dims();
  auto w_dims = param.w->dims();
29

T
tensor-tang 已提交
30 31
  CHECK_GE(x_dims.size(), 2UL);
  CHECK_EQ(w_dims.size(), 2UL);
32 33
  CHECK_EQ(param.output->dims().size(), 2UL);

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  const auto* i_data = param.input->data<float>();
  const auto* w_data = param.w->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  int x_h = x_dims.Slice(0, param.in_num_col_dims).production();
  int x_w = x_dims.Slice(param.in_num_col_dims, x_dims.size()).production();
  int n = w_dims[1];
  CHECK_EQ(x_w, static_cast<int>(w_dims[0]));
  auto& ctx = this->ctx_->template As<ARMContext>();
  if (x_h > 1) {
    float* packed_in = static_cast<float*>(ctx.workspace_data<float>()) +
                       ctx.l2_cache_size() / sizeof(float);
    lite::arm::math::prepackA(packed_in, i_data, x_w, 0, x_h, 0, x_w, false,
                              &ctx);
    lite::arm::math::sgemm_prepack(packed_in, w_data, b_data, o_data, x_h, n,
                                   x_w, false, false, false, &ctx);

    if (param.bias) {
      CHECK_EQ(param.bias->numel(), n);
      lite::arm::math::fill_bias_fc(o_data, b_data, x_h, n);
    }
  } else {
    // use sgemmv
    // sgemv((const float*)weights, (const float*)din, (float*)dout,
    //       false, n, x_w, _param->_flag_bias, (float*)bias, false);
  }
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

TargetType FcCompute::target() const { return TARGET(kARM); }

PrecisionType FcCompute::precision() const { return PRECISION(kFloat); }

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(fc, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::FcCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();