basic_api_transformer.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiongkun 已提交
15

16
import astor
17

18
from paddle.utils import gast
19

20
from . import utils
21
from .base_transformer import BaseTransformer
22

23 24
__all__ = []

25

26
class BasicApiTransformer(BaseTransformer):
27 28 29 30
    """
    Class to transform basic API from dygraph to static graph.
    """

31 32
    def __init__(self, root):
        self.root = root
33 34 35
        self.class_node_dict = {}

    def transform(self):
36 37
        to_tensor_transformer = ToTensorTransformer(self.root)
        to_tensor_transformer.transform()
38 39
        attribute_transformer = AttributeJstTransformer(self.root)
        attribute_transformer.transform()
40
        self.visit(self.root)
41
        return self.root
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    def visit_Assign(self, node):
        if self._update_class_node_dict(node):
            return None

        for child_node in gast.walk(node.value):
            if isinstance(child_node, gast.Call):
                self._visit_Call(child_node)
        return node

    def visit_Expr(self, node):
        value_node = node.value
        for child_node in gast.walk(value_node):
            if isinstance(child_node, gast.Call):
                # TODO(liym27):
                #  Considers that a dygraph api which modifies the input or has a output.
58
                if utils.is_dygraph_api(child_node):
59 60 61 62 63 64 65 66 67 68 69
                    return
                else:
                    self._visit_Call(child_node)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        func_name = astor.to_source(gast.gast_to_ast(node.func))

        if self._is_dygraph_forward(func_name):
            class_node = self._get_class_node(func_name)
70
            static_node = utils.to_static_ast(node, class_node)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            return static_node
        else:
            return node

    def _is_dygraph_forward(self, func_id):
        return func_id in self.class_node_dict

    def _get_class_node(self, func_id):
        return self.class_node_dict[func_id]

    def _update_class_node_dict(self, node):
        assert isinstance(node, gast.Assign)
        node_value = node.value
        if isinstance(node_value, gast.Call):
            if is_to_variable(node_value):
                return False

88
            if utils.is_dygraph_api(node_value):
89
                dygraph_api = node_value.func.attr
90
                if not utils.dygraph_class_to_static_api.get(dygraph_api):
91 92
                    return False

93
                utils.update_args_of_func(node_value, node_value, "__init__")
94 95 96 97 98
                target_str = astor.to_source(gast.gast_to_ast(node.targets[0]))
                self.class_node_dict[target_str] = node_value
                return True
            # TODO: node.value is not dygraph class
        return False
99 100


101
class ToTensorTransformer(BaseTransformer):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    """
    Class to transform paddle.to_tensor and paddle.to_variable to paddle.assign
    """

    def __init__(self, node):
        assert isinstance(
            node, gast.AST
        ), "Input non-gast.AST node for the initialization of ToTensorTransformer."
        self.root = node

    def transform(self):
        self.visit(self.root)
        return self.root

    def visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if is_to_variable(node):
            node = to_assign_node(node)
        self.generic_visit(node)
        return node


124 125 126 127 128 129 130 131 132 133 134 135
class NameloadJstTransformer(BaseTransformer):
    """
    change name and attribute load to __jst.Ld(name) pattern.
    for example:
        a.dtype -->  __jst.Ld(__jst.Ld(a).dtype)

    In paddle science and deepxde, we have to support changing tensor into variable
    in arbitrary occasion such as global tensor.

    NOTE: we only deal with ctx=Load() case.
    """

136 137
    def __init__(self, root):
        self.root = root
138 139 140 141 142 143 144

    def transform(self):
        self.visit(self.root)
        return self.root

    def _surround_with_ld(self, node):
        node = (
145
            gast.parse(f"_jst.Ld({utils.ast_to_source_code(node).strip()})")
146 147 148 149 150 151 152 153 154
            .body[0]
            .value
        )
        return node

    def visit_Call(self, node):
        """
        Can't convert name of function call, bacause this will affect CallTransformer.
        """
155 156
        node.args = [self.visit(arg) for arg in node.args]
        node.func = self.visit(node.func)
157 158 159 160 161
        return node

    def visit_Attribute(self, node):
        assert isinstance(node, gast.Attribute)
        assert isinstance(node.attr, str)
162 163
        if utils.ast_to_source_code(node).startswith("_jst."):  # skip _jst.xxx
            return node
164 165 166 167 168 169 170 171 172 173 174 175 176
        self.generic_visit(node)
        if isinstance(node.ctx, gast.Load):
            node = self._surround_with_ld(node)
        return node

    def visit_Name(self, node):
        assert isinstance(node, gast.Name)
        self.generic_visit(node)
        if isinstance(node.ctx, gast.Load):
            node = self._surround_with_ld(node)
        return node


177 178 179 180 181 182
class AttributeJstTransformer(BaseTransformer):
    """
    change some special attribute into __jst.XXX(obj, "attr_name") format.
    for example:
        a.size  -->  __jst.attr(a, "size")

183
    because `size` have different behavier when in dygraph / static graph mode
184 185 186 187 188 189 190
    NOTE: we only deal with ctx=Load() case.
    """

    def __init__(self, node):
        assert isinstance(
            node, gast.AST
        ), "Input non-gast.AST node for the initialization of ToTensorTransformer."
191 192 193
        self.interested_name = {
            'size',
        }
194 195 196 197 198 199 200 201 202
        self.root = node

    def transform(self):
        self.visit(self.root)
        return self.root

    def visit_Attribute(self, node):
        assert isinstance(node, gast.Attribute)
        assert isinstance(node.attr, str)
203 204 205 206
        if (
            isinstance(node.ctx, gast.Load)
            and node.attr in self.interested_name
        ):
207 208
            attr = node.attr
            value = node.value
209 210 211
            node = (
                gast.parse(
                    "_jst.Attr({}, \"{}\")".format(
212
                        utils.ast_to_source_code(value).strip(), attr
213 214 215 216 217
                    )
                )
                .body[0]
                .value
            )
218 219 220 221
        self.generic_visit(node)
        return node


222 223 224 225 226 227 228 229 230 231 232
def is_to_variable(node):
    assert isinstance(node, gast.Call)
    api_name = utils.ast_to_source_code(node.func).strip()

    if utils.is_dygraph_api(node):
        return api_name.endswith("to_variable")

    return False


def to_assign_node(node):
233
    # Transform dygraph api `base.dygraph.to_variable` alias `paddle.to_tensor` to static api `paddle.assign`.
234 235 236 237 238 239
    # NOTE:
    #   1. Api `to_variable` supports data type {float16, float32, float64, int16, int32, int64, uint8, uint16},
    #   but api `assign` only supports {float32, float64, int32, int64, bool};
    #   2. If the input of api `assign` is numpy.ndarray, its size cannot be greater than 1024 * 1024.

    assert isinstance(node, gast.Call)
240
    assign_api = gast.parse('paddle.assign').body[0].value
241 242 243 244 245 246 247 248
    node.func = assign_api

    if node.args:
        node.args = [node.args[0]]
        node.keywords = []
    else:
        for idx, kw in enumerate(node.keywords):
            if kw.arg == 'value' or kw.arg == 'data':
249
                node.keywords[idx].arg = 'x'
250 251 252 253
                node.keywords = [node.keywords[idx]]
                node.args = []
                break
    return node