demo_trainer.cc 6.8 KB
Newer Older
M
mapingshuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <time.h>
#include <fstream>

#include "include/save_model.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/dataset_factory.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"

#include "gflags/gflags.h"

DEFINE_string(filelist, "train_filelist.txt", "filelist for fluid dataset");
DEFINE_string(data_proto_desc, "data.proto", "data feed protobuf description");
DEFINE_string(startup_program_file, "startup_program",
              "startup program description");
DEFINE_string(main_program_file, "", "main program description");
DEFINE_string(loss_name, "mean_0.tmp_0",
              "loss tensor name in the main program");
DEFINE_string(save_dir, "cnn_model", "directory to save trained models");
DEFINE_int32(epoch_num, 30, "number of epochs to run when training");

namespace paddle {
namespace train {

void ReadBinaryFile(const std::string& filename, std::string* contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<paddle::framework::ProgramDesc> LoadProgramDesc(
    const std::string& model_filename) {
  VLOG(3) << "loading model from " << model_filename;
  std::string program_desc_str;
  ReadBinaryFile(model_filename, &program_desc_str);
  std::unique_ptr<paddle::framework::ProgramDesc> main_program(
      new paddle::framework::ProgramDesc(program_desc_str));
  return main_program;
}

bool IsPersistable(const paddle::framework::VarDesc* var) {
  if (var->Persistable() &&
      var->GetType() != paddle::framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != paddle::framework::proto::VarType::FETCH_LIST &&
      var->GetType() != paddle::framework::proto::VarType::RAW) {
    return true;
  }
  return false;
}

}  // namespace train
}  // namespace paddle

int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);

  std::cerr << "filelist: " << FLAGS_filelist << std::endl;
  std::cerr << "data_proto_desc: " << FLAGS_data_proto_desc << std::endl;
  std::cerr << "startup_program_file: " << FLAGS_startup_program_file
            << std::endl;
  std::cerr << "main_program_file: " << FLAGS_main_program_file << std::endl;
  std::cerr << "loss_name: " << FLAGS_loss_name << std::endl;
  std::cerr << "save_dir: " << FLAGS_save_dir << std::endl;
  std::cerr << "epoch_num: " << FLAGS_epoch_num << std::endl;

  std::string filelist = std::string(FLAGS_filelist);
  std::vector<std::string> file_vec;
  std::ifstream fin(filelist);
  if (fin) {
    std::string filename;
    while (fin >> filename) {
      file_vec.push_back(filename);
    }
  }
  PADDLE_ENFORCE_GE(file_vec.size(), 1, "At least one file to train");
  paddle::framework::InitDevices(false);
  const auto cpu_place = paddle::platform::CPUPlace();
  paddle::framework::Executor executor(cpu_place);
  paddle::framework::Scope scope;
  auto startup_program =
      paddle::train::LoadProgramDesc(std::string(FLAGS_startup_program_file));
  auto main_program =
      paddle::train::LoadProgramDesc(std::string(FLAGS_main_program_file));

  executor.Run(*startup_program, &scope, 0);

  std::string data_feed_desc_str;
  paddle::train::ReadBinaryFile(std::string(FLAGS_data_proto_desc),
                                &data_feed_desc_str);
  VLOG(3) << "load data feed desc done.";
  std::unique_ptr<paddle::framework::Dataset> dataset_ptr;
  dataset_ptr =
      paddle::framework::DatasetFactory::CreateDataset("MultiSlotDataset");
  VLOG(3) << "initialize dataset ptr done";

  // find all params
  std::vector<std::string> param_names;
  const paddle::framework::BlockDesc& global_block = main_program->Block(0);
  for (auto* var : global_block.AllVars()) {
    if (paddle::train::IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();
      param_names.push_back(var->Name());
    }
  }

  int epoch_num = FLAGS_epoch_num;
  std::string loss_name = FLAGS_loss_name;
  auto loss_var = scope.Var(loss_name);

  LOG(INFO) << "Start training...";

  for (int epoch = 0; epoch < epoch_num; ++epoch) {
    VLOG(3) << "Epoch:" << epoch;
    // get reader
    dataset_ptr->SetFileList(file_vec);
    VLOG(3) << "set file list done";
    dataset_ptr->SetThreadNum(1);
    VLOG(3) << "set thread num done";
    dataset_ptr->SetDataFeedDesc(data_feed_desc_str);
    VLOG(3) << "set data feed desc done";
    dataset_ptr->CreateReaders();
    const std::vector<paddle::framework::DataFeed*> readers =
        dataset_ptr->GetReaders();
    PADDLE_ENFORCE_EQ(readers.size(), 1,
                      "readers num should be equal to thread num");
    const std::vector<std::string>& input_feed_names =
        readers[0]->GetUseSlotAlias();
    for (auto name : input_feed_names) {
      readers[0]->AddFeedVar(scope.Var(name), name);
    }
    VLOG(3) << "get reader done";
    readers[0]->Start();
    VLOG(3) << "start a reader";
    VLOG(3) << "readers size: " << readers.size();

    int step = 0;
    std::vector<float> loss_vec;

    while (readers[0]->Next() > 0) {
      executor.Run(*main_program, &scope, 0, false, true);
      loss_vec.push_back(
          loss_var->Get<paddle::framework::LoDTensor>().data<float>()[0]);
    }
    float average_loss =
        accumulate(loss_vec.begin(), loss_vec.end(), 0.0) / loss_vec.size();

    LOG(INFO) << "epoch: " << epoch << "; average loss: " << average_loss;
    dataset_ptr->DestroyReaders();

    // save model
    std::string save_dir_root = FLAGS_save_dir;
    std::string save_dir =
        save_dir_root + "/epoch" + std::to_string(epoch) + ".model";
    paddle::framework::save_model(main_program, &scope, param_names, save_dir,
                                  false);
  }
}