test_beam_search_decoder.py 8.9 KB
Newer Older
Q
Qingsheng Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A simple machine translation demo using beam search decoder.
"""

import contextlib
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
25
from paddle.fluid.contrib.decoder.beam_search_decoder import BeamSearchDecoder, InitState, StateCell, TrainingDecoder
Q
Qingsheng Li 已提交
26 27
import unittest

P
pangyoki 已提交
28 29
paddle.enable_static()

Q
Qingsheng Li 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 32
decoder_size = hidden_dim
IS_SPARSE = True
batch_size = 2
max_length = 8
topk_size = 50
trg_dic_size = 10000
beam_size = 2


def encoder():
    # encoder
46 47 48 49 50 51 52 53
    src_word = layers.data(name="src_word",
                           shape=[1],
                           dtype='int64',
                           lod_level=1)
    src_embedding = layers.embedding(input=src_word,
                                     size=[dict_size, word_dim],
                                     dtype='float32',
                                     is_sparse=IS_SPARSE)
Q
Qingsheng Li 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

    fc1 = layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_last_step(input=lstm_hidden0)
    return encoder_out


def decoder_state_cell(context):
    h = InitState(init=context, need_reorder=True)
    state_cell = StateCell(inputs={'x': None}, states={'h': h}, out_state='h')

    @state_cell.state_updater
    def updater(state_cell):
        current_word = state_cell.get_input('x')
        prev_h = state_cell.get_state('h')
        # make sure lod of h heritted from prev_h
        h = layers.fc(input=[prev_h, current_word],
                      size=decoder_size,
                      act='tanh')
        state_cell.set_state('h', h)

    return state_cell


def decoder_train(state_cell):
    # decoder
80 81 82 83 84 85 86 87
    trg_language_word = layers.data(name="target_word",
                                    shape=[1],
                                    dtype='int64',
                                    lod_level=1)
    trg_embedding = layers.embedding(input=trg_language_word,
                                     size=[dict_size, word_dim],
                                     dtype='float32',
                                     is_sparse=IS_SPARSE)
Q
Qingsheng Li 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    decoder = TrainingDecoder(state_cell)

    with decoder.block():
        current_word = decoder.step_input(trg_embedding)
        decoder.state_cell.compute_state(inputs={'x': current_word})
        current_score = layers.fc(input=decoder.state_cell.get_state('h'),
                                  size=target_dict_dim,
                                  act='softmax')
        decoder.state_cell.update_states()
        decoder.output(current_score)

    return decoder()


def decoder_decode(state_cell):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    init_ids = layers.data(name="init_ids",
                           shape=[1],
                           dtype="int64",
                           lod_level=2)
    init_scores = layers.data(name="init_scores",
                              shape=[1],
                              dtype="float32",
                              lod_level=2)

    decoder = BeamSearchDecoder(state_cell=state_cell,
                                init_ids=init_ids,
                                init_scores=init_scores,
                                target_dict_dim=target_dict_dim,
                                word_dim=word_dim,
                                input_var_dict={},
                                topk_size=topk_size,
                                sparse_emb=IS_SPARSE,
                                max_len=max_length,
                                beam_size=beam_size,
                                end_id=1,
                                name=None)
Q
Qingsheng Li 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138
    decoder.decode()
    translation_ids, translation_scores = decoder()

    return translation_ids, translation_scores


def train_main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder()
    state_cell = decoder_state_cell(context)
    rnn_out = decoder_train(state_cell)
139 140 141 142
    label = layers.data(name="target_next_word",
                        shape=[1],
                        dtype='int64',
                        lod_level=1)
Q
Qingsheng Li 已提交
143
    cost = layers.cross_entropy(input=rnn_out, label=label)
144
    avg_cost = paddle.mean(x=cost)
Q
Qingsheng Li 已提交
145 146 147 148

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-3)
    optimizer.minimize(avg_cost)

149 150 151
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.wmt14.train(dict_size), buf_size=1000),
                                batch_size=batch_size)
Q
Qingsheng Li 已提交
152 153 154 155 156 157 158 159 160 161 162 163
    feed_order = ['src_word', 'target_word', 'target_next_word']

    exe = Executor(place)

    def train_loop(main_program):
        exe.run(framework.default_startup_program())

        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

164
        for pass_id in range(1):
Q
Qingsheng Li 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            for batch_id, data in enumerate(train_reader()):
                outs = exe.run(main_program,
                               feed=feeder.feed(data),
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
                if batch_id > 3:
                    break

    train_loop(framework.default_main_program())


def decode_main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder()
    state_cell = decoder_state_cell(context)
    translation_ids, translation_scores = decoder_decode(state_cell)

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([0 for _ in range(batch_size)], dtype='int64')
191 192
    init_scores_data = np.array([1. for _ in range(batch_size)],
                                dtype='float32')
Q
Qingsheng Li 已提交
193 194 195 196 197 198 199 200
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [1] * batch_size
    init_lod = [init_lod, init_lod]

    init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
    init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

201 202 203
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.wmt14.train(dict_size), buf_size=1000),
                                batch_size=batch_size)
Q
Qingsheng Li 已提交
204 205 206 207 208 209 210 211

    feed_order = ['src_word']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

212 213
    data = next(train_reader())
    feed_dict = feeder.feed([[x[0]] for x in data])
Q
Qingsheng Li 已提交
214 215 216 217 218 219 220 221
    feed_dict['init_ids'] = init_ids
    feed_dict['init_scores'] = init_scores

    result_ids, result_scores = exe.run(
        framework.default_main_program(),
        feed=feed_dict,
        fetch_list=[translation_ids, translation_scores],
        return_numpy=False)
222
    print(result_ids.lod())
Q
Qingsheng Li 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249


class TestBeamSearchDecoder(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda):
    f_name = 'test_{0}_train'.format('cuda' if use_cuda else 'cpu')

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda)

    setattr(TestBeamSearchDecoder, f_name, f)


def inject_test_decode(use_cuda, decorator=None):
Z
zhangchunle 已提交
250
    f_name = 'test_{0}_decode'.format('cuda' if use_cuda else 'cpu')
Q
Qingsheng Li 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda)

    if decorator is not None:
        f = decorator(f)

    setattr(TestBeamSearchDecoder, f_name, f)


for _use_cuda_ in (False, True):
    inject_test_train(_use_cuda_)

for _use_cuda_ in (False, True):
    _decorator_ = None
    inject_test_decode(use_cuda=_use_cuda_, decorator=_decorator_)

if __name__ == '__main__':
    unittest.main()