config_parser.py 120.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
103
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
104 105 106
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
107
print = logger.info
108 109 110 111

# from layer type name to layer class
g_layer_type_map = {}

112

113 114 115
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
131 132

        # store command args of paddle_trainer
133
        g_command_config_args={},
134 135

        # Used for PyDataProvider to avoid duplicate module name
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141 142 143 144 145 146 147 148
        g_add_submodel_suffix=False,

        # Whether current layer needs to pass the image height and width.
        # Default value is true, but if it encounters recurrent_layer_group, 
        # it will be false. The reason is that image is converted to be sequence, 
        # image height will be sequence length, and image width will be feature 
        # length of each timestep.
        g_pass_height_width=True, ):
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

165

166 167
g_config_funcs = {}

168

169 170 171 172 173
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

174

175 176 177 178 179
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

180

181 182 183 184 185 186
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
187

188 189
    return wrap

190

191 192 193
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

194

195 196 197
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

198

199 200 201
def default(x, default_value):
    return default_value if x is None else x

202

203 204 205 206 207 208
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

209

210 211
# functions available in config file

212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

231

232 233
@config_func
def HasInputsSet():
234
    return len(g_current_submodel.input_layer_names) != 0
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

260
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
261 262 263 264 265 266 267 268 269

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

270

271
@config_func
272
def SubModelEnd(name=None):
273
    global g_current_submodel, g_root_submodel, g_submodel_stack
274 275
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
276
    if name is not None:
277 278 279
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
280 281 282

    g_current_submodel = g_submodel_stack.pop()

283

284 285
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
286 287
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
288 289
    return name + suffix

290

291 292 293
def GetLayerBaseName(name):
    return name.split('@')[0]

294 295

def MakeLayerNameInSubmodel(name, submodel_name=None):
296 297
    global g_current_submodel
    global g_add_submodel_suffix
298 299
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
300 301 302 303 304
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
329 330
                                            seq_reversed=False,
                                            target_inlinkname=""):
331 332 333 334 335 336 337
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
338
    g_current_submodel.target_inlinkid = -1
339
    in_links_count = 0
340
    for linkid, link in enumerate(in_links):
341 342 343 344 345 346
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
347 348 349 350
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

351 352 353
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
354 355 356 357
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
358 359 360 361 362 363 364
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
365

366 367 368 369 370
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
388
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
389 390 391 392 393 394 395 396
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
397
                             target_inlinkname="",
398
                             seq_reversed=False):
399
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
400
                                            target_inlinkname)
401 402 403 404 405
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
406 407 408 409 410
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
411 412 413 414 415 416 417


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
418
    for pair in g_current_submodel.memories:  #check exist
419
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
420 421
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

440

441 442 443 444 445 446
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
465
            is_shared=None, ):
466 467
        self.add_keys(locals())

468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
489
            bilinear_interp=None,
490 491 492 493
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
494
            maxout=None,
Q
qijun 已提交
495
            spp=None,
496 497 498 499 500
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
501
            input_layer_argument=None, ):
502 503 504
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

505

506 507 508
# Define a projection for iexed layer
@config_class
class Projection(Input):
509 510
    type = None  # subclass should set it correctly

511 512 513
    def __init__(
            self,
            input_layer_name,
514
            size=0,  # projection output size
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
534
            input_layer_argument=None, ):
535 536 537 538 539 540 541 542 543 544 545 546 547
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
548

549 550
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
551

552 553 554 555 556 557 558 559 560 561
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
562

563 564
    def calc_parameter_size(self, input_size, output_size):
        return 0
565

566 567 568
    def calc_parameter_dims(self, input_size, output_size):
        return []

569

570 571 572 573 574 575
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

576 577 578
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
579 580 581 582
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
583

584 585 586
    def calc_parameter_dims(self, input_size, output_size):
        return []

587

588 589 590 591 592 593 594
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
595

596 597
    def calc_parameter_size(self, input_size, output_size):
        return output_size
598

599 600 601
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

602

X
xuwei06 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

617

618 619 620 621 622 623
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
624

625 626 627
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

628

629 630 631 632 633 634
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
635

636 637 638
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

639

640 641 642 643 644 645
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
646

647 648 649
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

650

651 652 653 654
@config_class
class ContextProjection(Projection):
    type = 'context'

655 656
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


680 681 682 683
@config_class
class ConvProjection(Projection):
    type = 'conv'

684 685 686 687 688
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
689 690 691 692 693
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

694
        parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
695
                   num_filters)
696 697 698
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
        return co * ci * fh * fw

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

716

717 718 719
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
720 721
    type = None  # subclass should set it correctly

722 723
    def __init__(
            self,
724
            input_layer_names, ):
725 726 727 728 729 730 731 732 733 734
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

735

736 737 738
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
739 740 741

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
760 761 762 763 764 765 766

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
767 768 769
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

770 771
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
772
                   self.operator_conf.conv_conf, num_filters)
773 774 775
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
776 777 778

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

779 780
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
781 782 783 784 785


# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
786 787 788 789 790 791 792 793 794 795 796 797 798
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
799 800
        self.add_keys(locals())
        if filter_size_y is None:
801
            self.filter_size_y = filter_size
802
        if padding_y is None:
803
            self.padding_y = padding
804
        if stride_y is None:
805
            self.stride_y = stride
806
        if output_x is not None:
807 808
            config_assert(output_x <= 0)

809

810 811
@config_class
class BilinearInterp(Cfg):
812
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
813 814
        self.add_keys(locals())

815

816 817
@config_class
class Pool(Cfg):
818 819 820 821 822 823 824 825 826 827
    def __init__(self,
                 pool_type,
                 channels,
                 size_x,
                 size_y=None,
                 start=None,
                 stride=None,
                 stride_y=None,
                 padding=None,
                 padding_y=None):
828
        self.add_keys(locals())
829 830


Q
qijun 已提交
831
@config_class
Q
qijun 已提交
832
class SpatialPyramidPool(Cfg):
833
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
834
        self.add_keys(locals())
835

836

837 838
@config_class
class Norm(Cfg):
839 840 841 842 843 844 845 846 847
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
848 849
        self.add_keys(locals())

850

851 852
@config_class
class Image(Cfg):
853
    def __init__(self, channels, img_size=None):
854 855
        self.add_keys(locals())

856

857 858
@config_class
class BlockExpand(Cfg):
859 860 861 862 863 864 865 866 867 868 869 870
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
871 872
        self.add_keys(locals())

873

874 875
@config_class
class MaxOut(Cfg):
876
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
877 878
        self.add_keys(locals())

879

880 881 882 883 884 885 886 887 888 889 890 891 892
def DataBase(async_load_data=False,
             constant_slots=None,
             data_ratio=1,
             is_main_data=True,
             usage_ratio=None):
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
893 894
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
895

896
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
897 898 899 900 901 902
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

903

904
@config_func
905 906 907 908 909
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
910 911 912 913 914 915 916 917 918 919
    data_config = DataBase(**xargs)
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

920

921
@config_func
922 923 924 925 926 927 928 929 930 931
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
932 933 934
    data_config = DataBase(**xargs)
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
935

936 937 938
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
939

940 941 942
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
943 944
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
945
        g_py_module_name_list.append(module_new_name)
946 947 948 949
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

974

975
@config_func
976 977 978 979 980 981 982
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    data_config = DataBase(**xargs)
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1003

1004 1005
#real data for training is actually provided by "sub_data" data providers.
@config_func
1006
def MultiData(sub_data=[]):
1007 1008 1009 1010 1011
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

1012

1013
@config_func
1014 1015 1016 1017 1018 1019 1020
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    data_config = DataBase(**xargs)
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

1056

1057 1058
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1059 1060 1061 1062 1063 1064 1065
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

1066

1067 1068
#calcualte image_size based on output_size for convolution. 
#It is the reverse function of cnn_output_size
1069
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
1070 1071 1072
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1073 1074
    return img_size

1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
def set_img_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1095 1096
def parse_pool(pool, input_layer_name, pool_conf):
    pool_conf.pool_type = pool.pool_type
1097 1098 1099
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
1100
                  "['max-projection', 'avg-projection', "
1101
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
1102 1103 1104 1105 1106 1107

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
1108
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
1109

1110 1111
    pool_conf.img_size, pool_conf.img_size_y = \
        set_img_size(input_layer_name, pool.channels)
1112

1113
    config_assert(not pool.start, "start is deprecated in pooling.")
1114

1115
    if pool.padding is not None:
1116 1117
        pool_conf.padding = pool.padding
        pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
1118 1119 1120 1121 1122 1123 1124
        pool_conf.output_x = cnn_output_size(
            pool_conf.img_size, pool_conf.size_x, pool_conf.padding,
            pool_conf.stride, False)
        pool_conf.output_y = cnn_output_size(
            pool_conf.img_size_y, pool_conf.size_y, pool_conf.padding_y,
            pool_conf.stride_y, False)

1125

Q
qijun 已提交
1126
def parse_spp(spp, input_layer_name, spp_conf):
1127
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1128 1129
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
1130 1131
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1132
    spp_conf.pyramid_height = spp.pyramid_height
1133

Q
qijun 已提交
1134

1135 1136
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
1137 1138
    image_conf.img_size, image_conf.img_size_y = \
        set_img_size(input_layer_name, image_conf.channels)
1139

1140 1141 1142 1143

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
1144 1145
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
                  norm.norm_type)
1146 1147 1148 1149 1150 1151
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

1152 1153
    norm_conf.img_size, norm_conf.img_size_y = \
        set_img_size(input_layer_name, norm.channels)
1154
    norm_conf.output_x = norm_conf.img_size
1155
    norm_conf.output_y = norm_conf.img_size_y
1156 1157 1158
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
1159 1160
        norm_conf.scale /= norm.size**2

1161

1162 1163
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1164
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
1165 1166 1167 1168 1169 1170 1171 1172 1173
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
1174

1175
    if not trans:
1176
        conv_conf.filter_channels = conv.channels / conv.groups
1177 1178
        conv_conf.img_size, conv_conf.img_size_y = \
            set_img_size(input_layer_name, conv.channels)
1179
        conv_conf.output_x = cnn_output_size(
1180 1181
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1182 1183 1184
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1185
    else:
1186
        conv_conf.filter_channels = num_filters / conv.groups
1187 1188
        conv_conf.output_x, conv_conf.output_y = \
            set_img_size(input_layer_name, conv.channels)
1189
        conv_conf.img_size = cnn_image_size(
1190 1191
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1192 1193 1194
        conv_conf.img_size_y = cnn_output_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1195

1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1210
        block_expand_conf.output_x = cnn_output_size(
1211
            block_expand.img_size_x, block_expand.block_x,
1212
            block_expand.padding_x, block_expand.stride_x, False)
1213 1214

    if block_expand_conf.img_size_y == 0:
1215
        block_expand_conf.output_y = 0
1216
    else:
1217
        block_expand_conf.output_y = cnn_output_size(
1218
            block_expand.img_size_y, block_expand.block_y,
1219
            block_expand.padding_y, block_expand.stride_y, False)
1220

1221

1222
def parse_maxout(maxout, input_layer_name, maxout_conf):
1223
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1224
    maxout_conf.groups = maxout.groups
1225

1226

1227 1228 1229 1230 1231 1232
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
1233 1234 1235 1236 1237 1238 1239 1240
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None, ):
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
    if delimited is not None:
        evaluator.delimited = delimited
1268

1269

1270 1271 1272 1273 1274
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
1275
            size,  # size can be 0. In this case, subclass should set it.
1276 1277 1278 1279
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1280
            coeff=None):
1281
        config_assert('@' not in name,
1282
                      "layer name: %s contain special character @" % name)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1298
        assert isinstance(self.config, LayerConfig)
1299 1300 1301
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1302 1303
        if coeff is not None:
            self.config.coeff = float(coeff)
1304 1305 1306 1307 1308 1309 1310
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1311
        elif g_default_device is not None:
1312 1313 1314 1315 1316 1317 1318 1319 1320
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
1321 1322
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
1323 1324 1325 1326 1327 1328 1329 1330
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
1331
                self.operators.append(input)
1332 1333 1334 1335
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
1336
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
1337
            config_assert(input_layer_name in g_layer_map,
1338 1339
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

1351 1352 1353 1354 1355 1356
        if self.config.type != 'data' and g_pass_height_width:
            height = self.get_input_layer(0).height
            width = self.get_input_layer(0).width
            if height and width:
                self.set_layer_height_width(height, width)

1357 1358 1359 1360 1361 1362
    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
1363
            bias,  # True/False or BiasCfg
1364
            size,
1365 1366 1367
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
1368 1369 1370 1371 1372 1373

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

1374 1375 1376
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
1377 1378 1379 1380 1381 1382 1383 1384 1385

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1386 1387
                assert isinstance(self.config, LayerConfig)

1388 1389 1390
                Parameter(
                    bias.parameter_name,
                    size,
1391 1392
                    self.config.device
                    if self.config.HasField('device') else None,
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
1404 1405
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
1406
                    is_static=bias.is_static,
1407
                    is_shared=bias.is_shared, )
1408 1409 1410 1411 1412
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

1413 1414 1415 1416 1417 1418
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
1433 1434
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
1435 1436
                          % (input_config.parameter_name, para.size, size))

1437 1438
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
1439 1440 1441 1442 1443 1444
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1445
            self.config.device if self.config.HasField("device") else None,
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
1458 1459
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
1460 1461 1462 1463
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
1464
            update_hooks=input_config.update_hooks)
1465 1466 1467 1468 1469 1470 1471 1472 1473

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

1491

1492 1493
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
1494 1495 1496
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
1497 1498
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

1499

1500 1501
@config_layer('fc')
class FCLayer(LayerBase):
1502
    def __init__(self, name, size, inputs, bias=True, **xargs):
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1513 1514
            else:
                sparse = None
1515

1516 1517
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1518 1519
        self.create_bias_parameter(bias, self.config.size)

1520

1521 1522
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
1553 1554
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

1567 1568
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1569 1570
        self.create_bias_parameter(bias, self.config.size)

1571

1572 1573
@config_layer('print')
class PrintLayer(LayerBase):
1574
    def __init__(self, name, inputs):
1575 1576
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

1577

1578 1579
@config_layer('data')
class DataLayer(LayerBase):
1580
    def __init__(self, name, size, height=None, width=None, device=None):
1581 1582
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
1583 1584
        if height and width:
            self.set_layer_height_width(height, width)
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
1613 1614


1615 1616
@config_layer('data_norm')
class DataNormLayer(LayerBase):
1617
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

1629

1630 1631 1632
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
1633 1634

    def __init__(self, name, inputs, partial_sum=1, **args):
1635 1636 1637 1638 1639 1640 1641 1642
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

1643

1644 1645 1646
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
1647 1648 1649 1650 1651 1652 1653 1654

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
1671
            (parallel_nn == 0 or self.config.device > -1)):
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
1684 1685
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
1686 1687
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1688 1689
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

1700

1701 1702 1703 1704
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

1705

1706 1707 1708 1709
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1710 1711 1712 1713

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
1714 1715 1716 1717 1718 1719 1720 1721

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1722
        super(ConvTransLayerBase, self).__init__(
1723 1724 1725 1726 1727 1728 1729 1730
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1731 1732
        # cudnn_convt has not been implemented so use exconvt only
        self.layer_type = "exconvt"
1733 1734 1735 1736 1737 1738 1739 1740
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1741
            parse_conv(
1742 1743
                self.inputs[input_index].conv,
                input_layer.name,
1744
                self.config.inputs[input_index].conv_conf,
1745
                num_filters,
1746
                trans=True)
1747 1748 1749 1750 1751
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
1752
                (conv_conf.img_size**2) * self.config.num_filters)
1753 1754 1755 1756 1757 1758 1759

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1760
        return conv_conf.channels * conv_conf.filter_channels \
1761 1762
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

1763

1764 1765 1766 1767
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

1768

1769 1770
@config_layer('norm')
class NormLayer(LayerBase):
1771 1772 1773
    def __init__(self, name, inputs, device=None):
        super(NormLayer, self).__init__(
            name, 'norm', 0, inputs=inputs, device=device)
1774 1775 1776
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
1777 1778 1779 1780
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
1781

1782 1783 1784

@config_layer('pool')
class PoolLayer(LayerBase):
1785 1786 1787
    def __init__(self, name, inputs, device=None):
        super(PoolLayer, self).__init__(
            name, 'pool', 0, inputs=inputs, device=device)
1788 1789 1790
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
1791 1792 1793 1794
            parse_pool(self.inputs[input_index].pool, input_layer.name,
                       pool_conf)
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
1795

1796

Q
qijun 已提交
1797 1798
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
1799 1800 1801
    def __init__(self, name, inputs, device=None):
        super(SpatialPyramidPoolLayer, self).__init__(
            name, 'spp', 0, inputs=inputs, device=device)
Q
qijun 已提交
1802 1803 1804
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
1805 1806 1807
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1808

1809

1810 1811 1812
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 device=None,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
1824 1825 1826 1827
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
1828 1829
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
1830 1831 1832 1833 1834 1835 1836 1837
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
1838 1839 1840 1841 1842 1843 1844
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
                    is_shared=is_shared, ))
1845 1846 1847 1848 1849 1850 1851

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1852
            cudnn_version >= 4007
1853
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
1854 1855 1856 1857 1858 1859 1860 1861
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            device=device,
            **xargs)
1862 1863 1864 1865 1866 1867

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

1868
        input_layer = self.get_input_layer(0)
1869
        image_conf = self.config.inputs[0].image_conf
1870 1871 1872
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                           image_conf.channels)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

1885

1886 1887
@config_layer('trans')
class TransLayer(LayerBase):
1888 1889 1890 1891 1892 1893
    def __init__(self, name, inputs, device=None):
        super(TransLayer, self).__init__(
            name, 'trans', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
1894 1895
        self.set_layer_size(self.get_input_layer(0).size)

1896

1897 1898
@config_layer('resize')
class ResizeLayer(LayerBase):
1899 1900 1901 1902 1903 1904 1905
    def __init__(self, name, size, inputs, device=None):
        super(ResizeLayer, self).__init__(
            name, 'resize', size=size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

1906 1907 1908

@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
1909 1910 1911
    def __init__(self, name, inputs, device=None):
        super(BlockExpandLayer, self).__init__(
            name, 'blockexpand', 0, inputs=inputs, device=device)
1912 1913
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1914 1915
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
1916
                self.config.inputs[input_index].block_expand_conf)
1917 1918 1919 1920 1921 1922
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

1923

1924 1925
@config_layer('maxout')
class MaxOutLayer(LayerBase):
1926 1927 1928
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
1929 1930
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
1931
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
1932 1933
        self.set_layer_size(g_layer_map[input_layer.name].size /
                            maxout_conf.groups)
1934 1935
        self.set_layer_height_width(g_layer_map[input_layer.name].height,
                                    g_layer_map[input_layer.name].width)
1936

1937

1938 1939 1940 1941
# key: cost type
# value: cost class
g_cost_map = {}

1942

1943 1944 1945
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
1946 1947
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
1948

1949
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
1950 1951 1952
    global g_cost_map
    g_cost_map[cost_type] = cls

1953

1954 1955 1956 1957 1958 1959 1960 1961
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
1962
define_cost('SumCost', 'sum_cost')
1963

1964

1965 1966
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
1967
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
1968 1969
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
1970 1971 1972
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
1973 1974 1975 1976 1977 1978 1979 1980
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
2006 2007


2008 2009
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
2010
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
2011 2012
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
2013
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
2014 2015
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
2016 2017 2018
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
2019 2020
        self.config.max_sort_size = max_sort_size

2021

2022 2023
@config_layer('nce')
class NCELayer(LayerBase):
2024 2025 2026 2027 2028 2029 2030 2031
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
2032
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
2033 2034
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
2035 2036
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
2037 2038 2039 2040
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
2041
            s = sum(neg_sampling_dist)
2042 2043 2044
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
2045 2046 2047 2048 2049

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
2050
        input_layer = self.get_input_layer(num_real_inputs)
2051 2052 2053 2054
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

2055 2056
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
2070
    def __init__(self, name, inputs, bias=True, **xargs):
2071 2072
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
2073
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2074 2075 2076 2077 2078
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2079

2080 2081
@config_layer('agent')
class AgentLayer(LayerBase):
2082 2083 2084 2085
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

2086 2087 2088

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
2089
    def __init__(self, name, size, device=None):
2090 2091 2092
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

2093

2094 2095
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
2096
    def __init__(self, name, size, device=None):
2097 2098 2099
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

2100

2101 2102
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2103
    def __init__(self, name, size, device=None):
2104 2105 2106
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

2107

2108 2109
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
2110
    def __init__(self, name, size, device=None):
2111
        super(SequenceGatherAgentLayer, self).__init__(
2112 2113
            name, 'sequence_gather_agent', size, inputs=[], device=device)

2114 2115 2116

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
2117
    def __init__(self, name, size, device=None):
2118
        super(SequenceScatterAgentLayer, self).__init__(
2119 2120
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

2121 2122 2123

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
2124 2125 2126 2127 2128
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
2129
        for i in range(1, len(inputs)):
2130 2131 2132 2133 2134
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

2135 2136

@config_func
2137 2138 2139
def Link(
        name,
        has_subseq=False, ):
2140 2141 2142 2143 2144
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

2145

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2160 2161 2162 2163 2164 2165 2166 2167
def Memory(
        name,
        size,
        is_sequence=False,
        boot_layer=None,
        boot_bias=False,
        boot_bias_active_type="",
        boot_with_const_id=None, ):
2168 2169 2170 2171 2172 2173
    agent_name = name + "+delay1"
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
2174
                  'Memory should be used in recurrent layer group only')
2175 2176 2177 2178
    memory = g_current_submodel.memories.add()
    memory.layer_name = MakeLayerNameInSubmodel(name)
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
2179
    options = sum((boot_layer is not None, bool(boot_bias),
2180
                   boot_with_const_id is not None))
2181 2182 2183 2184
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
2185 2186 2187
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
2188 2189
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
2190 2191 2192
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
2193
            boot_bias, size, for_self=False)
2194 2195 2196 2197 2198
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
2211 2212 2213 2214
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
2215 2216 2217 2218 2219 2220 2221 2222 2223
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

2224

2225 2226
@config_layer('expand')
class ExpandLayer(LayerBase):
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(ExpandLayer, self).__init__(
            name, 'expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

2243 2244 2245

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
2246 2247 2248 2249 2250 2251
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
2252
            self.config.num_filters = num_filters
2253
        else:
2254
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
2255
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
2256 2257 2258 2259


@config_layer('max')
class MaxLayer(LayerBase):
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False,
                 output_max_index=None):
        super(MaxLayer, self).__init__(
            name, 'max', 0, inputs=inputs, device=device)
2270
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2271 2272
        self.config.trans_type = trans_type
        self.config.active_type = active_type
2273 2274 2275 2276
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2277 2278
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
2279 2280 2281 2282


@config_layer('maxid')
class MaxIdLayer(LayerBase):
2283
    def __init__(self, name, inputs, beam_size=None, device=None):
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
2301
    def __init__(self, name, inputs, eos_id, device=None):
2302 2303 2304
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
2305
        self.set_layer_size(2)  # boolean output
2306 2307
        self.config.eos_id = eos_id

2308

2309 2310
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type = trans_type
2328 2329 2330 2331 2332
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2333

2334 2335 2336 2337 2338 2339 2340 2341 2342
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
2343 2344 2345 2346 2347 2348 2349 2350
            bias=False, ):
        super(SequenceFirstInstanceLayer, self).__init__(
            name,
            inputs=inputs,
            active_type=active_type,
            device=device,
            bias=bias)
        self.config.trans_type = trans_type
2351 2352
        self.config.select_first = True

2353

2354 2355
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
2371 2372 2373 2374 2375
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2376

2377 2378
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
2389
            size,
2390 2391 2392 2393 2394
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
2395 2396 2397
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

2398

2399 2400
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SubSequenceLayer, self).__init__(
            name,
            'subseq',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
2414 2415 2416 2417 2418 2419
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

2420

2421 2422
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
2423 2424 2425
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
2426 2427 2428 2429 2430
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

2431

2432 2433
@config_layer('power')
class PowerLayer(LayerBase):
2434 2435 2436
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
2437 2438 2439 2440
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
2441 2442 2443
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

2444 2445 2446

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
2447 2448 2449
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
2450 2451 2452 2453 2454 2455
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2456

2457 2458
@config_layer('scaling')
class ScalingLayer(LayerBase):
2459 2460 2461
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
2462 2463 2464 2465
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
2466 2467 2468
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

2469 2470 2471

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
2472 2473 2474
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
2475 2476 2477 2478
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2479

2480 2481
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
2482
    def __init__(self, name, size, inputs, device=None):
2483
        super(ConvexCombinationLayer, self).__init__(
2484 2485 2486
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2487 2488 2489
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
2490 2491
        self.set_layer_size(size)

2492

2493 2494
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
2495
    def __init__(self, name, inputs, device=None):
2496 2497
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
2498 2499
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
2500 2501 2502 2503 2504 2505 2506 2507
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

2508

2509 2510
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
2511
    def __init__(self, name, inputs, **xargs):
2512
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2513
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
2514
        input_layer = self.get_input_layer(0)
2515 2516 2517 2518
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
2519

L
liaogang 已提交
2520

2521 2522
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
2523
    def __init__(self, name, inputs, device=None):
2524
        super(SumToOneNormLayer, self).__init__(
2525 2526 2527
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
2528 2529 2530
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

2531

2532 2533
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
2534
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
2535
        super(CosSimVecMatLayer, self).__init__(
2536
            name, 'cos_vm', size, inputs=inputs, device=device)
2537
        self.config.cos_scale = cos_scale
2538 2539
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2540 2541 2542
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
2543

2544

2545 2546
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
2547
    def __init__(self, name, inputs, device=None):
2548 2549
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
2550 2551
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False):
        super(AverageLayer, self).__init__(
            name,
            'average',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
2579
        self.config.average_strategy = average_strategy
2580
        self.config.trans_type = trans_type
2581 2582 2583 2584 2585 2586
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2587

2588 2589
@config_layer('cos')
class CosSimLayer(LayerBase):
2590
    def __init__(self, name, inputs, cos_scale=5, device=None):
2591 2592 2593 2594 2595 2596
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2597
        self.config.cos_scale = cos_scale
2598 2599 2600 2601


@config_layer('tensor')
class TensorLayer(LayerBase):
2602 2603 2604
    def __init__(self, name, size, inputs, device=None, bias=True, **xargs):
        super(TensorLayer, self).__init__(
            name, 'tensor', size, inputs=inputs, device=device, **xargs)
2605 2606
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
2607 2608
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
2619 2620 2621 2622 2623 2624 2625
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2643
            if self.config.size == 0:
2644 2645 2646
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2647
            else:
2648 2649
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
2650 2651 2652 2653
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
2654 2655 2656 2657
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
2658 2659 2660
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2661
            if self.config.size == 0 and isinstance(input, Projection):
2662 2663 2664
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2665
            elif isinstance(input, Projection):
2666 2667 2668 2669 2670 2671
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
2683 2684
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2696 2697 2698 2699 2700 2701
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
2702

2703 2704 2705
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2706

2707 2708
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
2709

2710

2711 2712
# like MixedLayer, but no bias parameter
@config_func
2713
def ExpressionLayer(name, inputs, **xargs):
2714 2715
    MixedLayer(name, inputs, bias=False, **xargs)

2716

2717 2718
@config_layer('concat')
class ConcatenateLayer(LayerBase):
2719
    def __init__(self, name, inputs, bias=False, **xargs):
2720
        config_assert(inputs, 'inputs cannot be empty')
2721
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
2722 2723 2724 2725 2726 2727
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
2728
            if self.config.size == 0:
2729 2730 2731 2732
                size += input_layer.size

        self.set_layer_size(size)

2733

2734 2735 2736
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
2737
    def __init__(self, name, inputs, bias=False, **xargs):
2738 2739 2740
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2741 2742

        if isinstance(self.inputs[0], ConvProjection):
2743 2744 2745 2746 2747 2748
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
2770
                                              input.proj_conf.output_size)
2771
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
2772
                                             input.proj_conf.output_size)
2773 2774
            self.create_input_parameter(input_index, psize, dims)

2775 2776 2777 2778 2779 2780 2781
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2782 2783 2784
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2785

2786

2787 2788
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
2789
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2790 2791
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
2792 2793 2794 2795 2796 2797 2798 2799 2800
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

2801

2802 2803
@config_layer('lstmemory')
class LstmLayer(LayerBase):
2804 2805 2806 2807 2808 2809 2810 2811
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
2812 2813 2814 2815 2816 2817 2818 2819
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
2820
        self.config.active_gate_type = active_gate_type
2821 2822 2823 2824 2825
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

2826

2827 2828
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
2839 2840 2841
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
2842 2843 2844 2845 2846
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
2847 2848 2849
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

2850

2851 2852 2853
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
2854 2855 2856 2857
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
2858 2859 2860 2861
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

2862

2863 2864
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
2865 2866 2867 2868 2869 2870 2871 2872
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2873 2874
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
2875 2876 2877 2878
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
2879 2880
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
2881
        size = input_layer.size / (3 + dim_num)
2882
        self.set_layer_size(size)
2883
        self.config.active_gate_type = active_gate_type
2884 2885 2886
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
2887 2888
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
2889
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
2890 2891
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

2892 2893 2894

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
2906 2907 2908 2909 2910 2911
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
2912
        self.config.active_gate_type = active_gate_type
2913 2914 2915
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

2916

2917 2918
@config_layer('gru_step')
class GruStepLayer(LayerBase):
2919 2920 2921 2922 2923 2924 2925
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2926 2927
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
2928 2929 2930
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
2931 2932 2933 2934 2935
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
2936 2937 2938
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

2939

2940 2941 2942 2943 2944 2945 2946
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
2947 2948


2949 2950
@config_layer('crf')
class CRFLayer(LayerBase):
2951
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
2952
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
2953 2954
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
2955 2956 2957
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])
        self.config.coeff = coeff

2958

2959 2960 2961 2962 2963 2964 2965 2966
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
2967 2968


2969 2970
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
2971
    def __init__(self, name, size, inputs, device=None):
2972 2973 2974 2975 2976 2977 2978
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])

2979

2980 2981
@config_layer('ctc')
class CTCLayer(LayerBase):
2982
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
2983 2984 2985 2986
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

2987

2988 2989
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
2990
    def __init__(self, name, device=None):
2991 2992
        global g_pass_height_width
        g_pass_height_width = False
2993 2994 2995 2996 2997 2998
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
2999
def Layer(name, type, **xargs):
3000 3001 3002 3003
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
3004
    config_assert(layer_func, "layer type '%s' not supported." % type)
3005
    return layer_func(name, **xargs)
3006

3007

3008
@config_func
3009
def ParameterHook(type, **kwargs):
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
3044 3045 3046 3047 3048 3049 3050

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

3062 3063
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3064 3065 3066 3067 3068

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

3069 3070 3071 3072
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3073

3074 3075
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3076 3077 3078
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

3079 3080 3081 3082 3083 3084
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
3085 3086
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3087 3088
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
3089 3090
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
3091 3092 3093 3094 3095 3096
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
3097 3098 3099
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
3100 3101 3102 3103
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3104 3105 3106 3107 3108 3109 3110

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
3111 3112 3113 3114
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3115 3116
    if is_shared is not None:
        para.is_shared = is_shared
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

3138

3139 3140 3141 3142 3143
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

3144

3145 3146 3147 3148 3149
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

3150

3151 3152 3153 3154 3155
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

3156

3157 3158 3159 3160 3161
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

3162

3163 3164 3165 3166 3167
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

3168

3169 3170 3171 3172 3173
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

3174

3175 3176 3177 3178 3179
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

3180

3181 3182 3183 3184 3185
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

3186

3187 3188 3189 3190 3191
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

3192

3193 3194 3195 3196 3197
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

3198

3199 3200 3201 3202 3203
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
3204 3205 3206
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

3207 3208
    return Import

3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
3238 3239 3240
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
3241

3242
settings_deprecated = dict(usage_ratio=1., )
3243 3244 3245 3246

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
3247 3248
    start_pass=0, )

3249 3250 3251 3252 3253

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
3254 3255
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

3267

3268 3269 3270 3271
@config_func
def cluster_config(**args):
    pass

3272

3273 3274 3275 3276 3277 3278 3279 3280 3281
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

3282

3283 3284 3285 3286
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
3303
        get_config_arg=make_get_config_arg(config_args), )
3304 3305 3306 3307 3308

    funcs.update(g_extended_config_funcs)

    return funcs

3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

3326

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

3339

3340 3341 3342 3343
def my_fatal(s):
    logger.critical(s)
    raise Exception()

3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
def parse_config(config_file, config_arg_str):
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

    execfile(config_file, make_config_environment(config_file, config_args))
    for k, v in settings.iteritems():
        if v is None:
            continue
3382
        g_config.opt_config.__setattr__(k, v)
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config_and_serialize(config_file, config_arg_str):
    try:
        config = parse_config(config_file, config_arg_str)
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

3409

3410 3411 3412 3413 3414 3415 3416 3417
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise
新手
引导
客服 返回
顶部