worker.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import paddle
import numpy as np
import traceback
from collections import namedtuple
from .. import core
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
from ..multiprocess_utils import _cleanup_mmap, CleanupFuncRegistrar, MP_STATUS_CHECK_INTERVAL
from ..framework import in_dygraph_mode
from .flat import _flatten_batch

# NOTE: queue has a different name in python2 and python3
if six.PY2:
    import Queue as queue
else:
    import queue

__all__ = ['get_worker_info']


class _IterableDatasetStopIteration(object):
    def __init__(self, worker_id):
        self.worker_id = worker_id


class _DatasetKind(object):
    MAP = 0
    ITER = 1

    @staticmethod
    def create_fetcher(kind, dataset, auto_collate_batch, collate_fn,
                       drop_last):
        if kind == _DatasetKind.MAP:
            return _MapDatasetFetcher(dataset, auto_collate_batch, collate_fn,
                                      drop_last)
        elif kind == _DatasetKind.ITER:
            return _IterableDatasetFetcher(dataset, auto_collate_batch,
                                           collate_fn, drop_last)
        else:
            raise NotImplementedError("unknown Dataset kind {}".format(kind))


class ParentWatchDog(object):
    def __init__(self):
        self._parent_pid = os.getppid()
        self._parent_alive = True

    def is_alive(self):
        if self._parent_alive:
            self._parent_alive = os.getppid() == self._parent_pid
        return self._parent_alive


# worker information for each workers, used for splitting data copy
# for IteratorDataset in worker processes.
_worker_info = None


def get_worker_info():
    """
    Get DataLoader worker process information function, this function is
    used to split data copy in worker process for IterableDataset
    (see :code:`paddle.io.IterableDataset`), worker information contains
    following fields:

    :attr:`num_workers`: total worker process number, see `paddle.io.DataLoader`

    :attr:`id`: the worker processs id, count from 0 to :attr:`num_workers - 1`

    :attr:`dataset`: the dataset object in this worker process

    Returns:
        WorkerInfo: an instance of WorkerInfo which contains fields above.

    .. note::
        For more usage and examples, please see :code:`paddle.io.IterableDataset`

    Example:

        .. code-block:: python

            import math
            import paddle
            import numpy as np
            from paddle.io import IterableDataset, DataLoader, get_worker_info

            class SplitedIterableDataset(IterableDataset):
                def __init__(self, start, end):
                    self.start = start
                    self.end = end

                def __iter__(self):
                    worker_info = get_worker_info()
                    if worker_info is None:
                        iter_start = self.start
                        iter_end = self.end
                    else:
                        per_worker = int(
                            math.ceil((self.end - self.start) / float(
                                worker_info.num_workers)))
                        worker_id = worker_info.id
                        iter_start = self.start + worker_id * per_worker
                        iter_end = min(iter_start + per_worker, self.end)

                    for i in range(iter_start, iter_end):
                        yield np.array([i])

            place = paddle.CPUPlace()
            dataset = SplitedIterableDataset(start=2, end=9)
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=2,
                batch_size=1,
                drop_last=True)

            for data in dataloader:
                print(data)
            # outputs: [2, 5, 3, 6, 4, 7]

    """
    return _worker_info


class WorkerInfo(object):
    __initialized = False

    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)
        self.__initialized = True

    def __setattr__(self, key, val):
        if self.__initialized:
            raise RuntimeError("Cannot assign attributes to {} objects".format(
                self.__class__.__name__))
        return super(WorkerInfo, self).__setattr__(key, val)


class _WorkerException(object):
    def __init__(self, worker_id, exc_info=None):
        self.worker_id = worker_id
        exc_info = exc_info or sys.exc_info()
        self.exc_type = exc_info[0]
        self.exc_msg = "".join(traceback.format_exception(*exc_info))

    def reraise(self):
        msg = "DataLoader worker({}) caught {} with message:\n{}".format(
            self.worker_id, self.exc_type.__name__, self.exc_msg)
        if getattr(self.exc_type, "message", None):
            raise self.exc_type(message=msg)
        raise self.exc_type(msg)


def _worker_loop(dataset, dataset_kind, indices_queue, out_queue, done_event,
                 auto_collate_batch, collate_fn, init_fn, worker_id,
                 num_workers, use_shared_memory):
    try:
        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        # set signal handler
        core._set_process_signal_handler()

        global _worker_info
        _worker_info = WorkerInfo(
            id=worker_id, num_workers=num_workers, dataset=dataset)

        init_exception = None
        try:
            if init_fn is not None:
                init_fn(worker_id)
            fetcher = _DatasetKind.create_fetcher(
                dataset_kind, dataset, auto_collate_batch, collate_fn, True)
        except:
            init_exception = _WorkerException(worker_id)

        iterator_drained = False
        parent_watch_dog = ParentWatchDog()

        while parent_watch_dog.is_alive():
            try:
                data = indices_queue.get(MP_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                continue

            # None as poison piil, so worker event should be set
            if data is None:
                assert done_event.is_set() or iterator_drained, \
                        "get None when worker done_event set"
                break
            # If worker done event is set but get still get data in
            # indices_queue, remaining data should be get and skipped.
            if done_event.is_set() or iterator_drained:
                continue

            idx, indices = data
            try:
                if init_exception is not None:
                    batch = init_exception
                    init_exception = None
                else:
                    # NOTE: GPU tensor operation is not supported in sub-process
                    #       but default device is GPU in paddle-gpu version, which
                    #       may copy CPU tensor to GPU even if users want to use
                    #       CPU tensor operation, so we add CPUPlace guard here
                    #       to make sure tensor will be operated only on CPU
                    with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
                        batch = fetcher.fetch(indices)
            except Exception as e:
                if isinstance(
                        e, StopIteration) and dataset_kind == _DatasetKind.ITER:
                    out_queue.put(_IterableDatasetStopIteration(worker_id))
                    iterator_drained = True
                else:
                    out_queue.put((idx, _WorkerException(worker_id), None))
            else:
                if isinstance(batch, _WorkerException):
                    out_queue.put((idx, batch, None))
                batch, structure = _flatten_batch(batch)
                if use_shared_memory:
                    tensor_list = core._convert_to_tensor_list(batch)
                    out_queue.put((idx, tensor_list, structure))
                    core._remove_tensor_list_mmap_fds(tensor_list)
                else:
                    out_queue.put((idx, batch, structure))
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())
    finally:
        if use_shared_memory:
            _cleanup_mmap()