executor_test.cc 8.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Q
qijun 已提交
16
#include <vector>
Y
Yang Yang 已提交
17
#include "gtest/gtest.h"
Y
Yang Yang 已提交
18
#include "paddle/framework/attribute.h"
Y
Yang Yang 已提交
19 20 21 22 23
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

USE_OP(elementwise_add);
Y
Yang Yang 已提交
24
USE_OP(gaussian_random);
Q
qijun 已提交
25
USE_OP(feed);
Q
qijun 已提交
26
USE_OP(fetch);
Q
qijun 已提交
27

Y
Yang Yang 已提交
28
using std::string;
Q
qijun 已提交
29 30 31
using namespace paddle::platform;
using namespace paddle::framework;

Y
Yang Yang 已提交
32 33 34
typedef paddle::framework::BlockDesc proto_block;
typedef paddle::framework::OpDesc proto_op;

35 36
void add_gaussian_random_op(string var_name, std::vector<int>& dim,
                            proto_block* block) {
Y
Yang Yang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("gaussian_random");
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }
  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

60 61
void add_feed_op(string var_name, std::vector<int>& dim, int index,
                 proto_block* block) {
Q
qijun 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("feed");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

94 95
void add_fetch_op(string var_name, std::vector<int>& dim, int index,
                  proto_block* block) {
Q
qijun 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("fetch");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_inputs();
  Out->set_parameter("Input");
  Out->add_arguments(var_name);
}

Q
qijun 已提交
128 129 130 131 132 133 134 135
std::once_flag set_variable_flag;

template <typename T>
void set_feed_variable(const std::vector<std::vector<T>>& inputs) {
  typedef std::vector<paddle::framework::Tensor> FeedInputs;
  Variable* g_feed_value = GetScope()->FindVar("feed_value");
  FeedInputs& feed_inputs = *(g_feed_value->GetMutable<FeedInputs>());
  auto size = inputs.size();
136
  feed_inputs.resize(size);
Q
qijun 已提交
137
  for (size_t i = 0; i < size; i++) {
138 139 140
    T* dst = feed_inputs[i].mutable_data<T>(
        make_ddim({static_cast<int64_t>(inputs[i].size())}), CPUPlace());
    memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
Q
qijun 已提交
141 142 143
  }
}

Q
qijun 已提交
144 145 146 147 148 149
template <typename T>
std::vector<std::vector<T>> get_fetch_variable() {
  typedef std::vector<paddle::framework::Tensor> FetchOutputs;
  Variable* g_fetch_value = GetScope()->FindVar("fetch_value");
  FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable<FetchOutputs>());

150
  auto size = fetch_outputs.size();
Q
qijun 已提交
151 152 153 154
  std::vector<std::vector<T>> result;
  result.reserve(size);
  for (size_t i = 0; i < size; i++) {
    std::vector<T> tmp;
155
    tmp.resize(fetch_outputs[i].numel());
Q
qijun 已提交
156 157 158 159 160 161 162
    memcpy(tmp.data(), fetch_outputs[i].data<T>(),
           fetch_outputs[i].numel() * sizeof(T));
    result.push_back(tmp);
  }
  return result;
}

Q
qijun 已提交
163
class ExecutorTesterRandom : public ::testing::Test {
Q
qijun 已提交
164 165 166 167 168 169
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

170 171 172
    std::vector<int> dim{2, 3};
    add_gaussian_random_op("a", dim, root_block);
    add_gaussian_random_op("b", dim, root_block);
Q
qijun 已提交
173 174 175 176 177 178

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

Y
Yang Yang 已提交
179 180 181
    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
Q
qijun 已提交
182 183
    X->set_parameter("X");
    X->add_arguments("a");
Y
Yang Yang 已提交
184
    auto Y = op->add_inputs();
Q
qijun 已提交
185 186
    Y->set_parameter("Y");
    Y->add_arguments("b");
Y
Yang Yang 已提交
187 188 189
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");
Q
qijun 已提交
190

191
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
192
  }
Y
Yang Yang 已提交
193

Q
qijun 已提交
194 195 196 197
 protected:
  ProgramDesc pdesc_;
};

Q
qijun 已提交
198 199 200 201 202 203 204
class ExecutorTesterFeed : public ::testing::Test {
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

205 206 207 208
    std::vector<int> dim{6};

    add_feed_op("a", dim, 0, root_block);
    add_feed_op("b", dim, 1, root_block);
Q
qijun 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    auto c = root_block->add_vars();
    c->set_name("c");
    auto c_lt = c->mutable_lod_tensor();
    c_lt->set_data_type(paddle::framework::DataType::FP32);

    auto op = root_block->add_ops();
    op->set_type("elementwise_add");
    auto X = op->add_inputs();
    X->set_parameter("X");
    X->add_arguments("a");
    auto Y = op->add_inputs();
    Y->set_parameter("Y");
    Y->add_arguments("b");
    auto Out = op->add_outputs();
    Out->set_parameter("Out");
    Out->add_arguments("c");

227
    add_fetch_op("c", dim, 0, root_block);
Q
qijun 已提交
228

229 230
    std::vector<float> vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    std::vector<float> vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
Q
qijun 已提交
231 232 233 234 235 236 237 238 239 240
    inputs_.push_back(vec1);
    inputs_.push_back(vec2);
  }

 protected:
  ProgramDesc pdesc_;
  std::vector<std::vector<float>> inputs_;
};

TEST_F(ExecutorTesterRandom, CPU) {
Q
qijun 已提交
241
  std::vector<Place> places;
242 243 244 245 246 247 248 249
  CPUPlace cpu_place;
  places.push_back(cpu_place);

  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);
Q
qijun 已提交
250

Y
Yang Yang 已提交
251
  Executor* executor = new Executor(places);
252 253 254 255 256 257 258 259
  executor->Run(pdesc_, GetScope());
  std::vector<std::vector<float>> result = get_fetch_variable<float>();
  for (auto& vec : result) {
    for (auto& num : vec) {
      std::cout << num << " ";
    }
    std::cout << std::endl;
  }
Q
qijun 已提交
260 261 262 263 264 265 266 267
  delete executor;
}

TEST_F(ExecutorTesterFeed, CPU) {
  std::vector<Place> places;
  CPUPlace cpu_place;
  places.push_back(cpu_place);

268 269 270 271 272 273
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);

Q
qijun 已提交
274 275 276 277 278
  Executor* executor = new Executor(places);

  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    // need to set feed variable before Executor::Run
Q
qijun 已提交
279
    std::cout << "start mini-batch " << i << std::endl;
Q
qijun 已提交
280 281
    set_feed_variable<float>(inputs_);
    executor->Run(pdesc_, GetScope());
Q
qijun 已提交
282 283 284 285 286 287 288
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
    for (auto& vec : result) {
      for (auto& num : vec) {
        std::cout << num << " ";
      }
      std::cout << std::endl;
    }
Q
qijun 已提交
289 290
  }

Q
qijun 已提交
291 292
  delete executor;
}
Y
Yang Yang 已提交
293

Q
qijun 已提交
294
#ifdef PADDLE_WITH_GPU
Q
qijun 已提交
295 296 297 298 299
TEST_F(ExecutorTesterRandom, GPU) {
  std::vector<Place> places;
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);

300 301
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
302
  Executor* executor = new Executor(places);
303
  executor->Run(pdesc_, GetScope());
Q
qijun 已提交
304 305 306 307
  delete executor;
}

TEST_F(ExecutorTesterFeed, GPU) {
Q
qijun 已提交
308
  std::vector<Place> places;
Q
qijun 已提交
309 310
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);
Y
Yang Yang 已提交
311

312 313
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
314
  Executor* executor = new Executor(places);
Q
qijun 已提交
315 316 317

  // need to set feed variable before Executor::Run
  set_feed_variable<float>(inputs_);
318
  executor->Run(pdesc_, GetScope());
Q
qijun 已提交
319

Q
qijun 已提交
320
  delete executor;
Y
Yang Yang 已提交
321
}
Q
qijun 已提交
322
#endif