elementwise_grad_kernel.cc 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
16

17 18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
20
#include "paddle/phi/kernels/cpu/elementwise_grad.h"
21 22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
23

24
namespace phi {
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T, typename Context>
void MaximumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, MaxGradDx<T>, MaxGradDy<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, MaxGradDx<T>(), MaxGradDy<T>());
}

template <typename T, typename Context>
void MinimumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, MinGradDx<T>, MinGradDy<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
}

52
}  // namespace phi
53

Y
YuanRisheng 已提交
54
PD_REGISTER_KERNEL(fmax_grad,
55 56 57 58 59 60 61 62
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMaxGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

Y
YuanRisheng 已提交
63
PD_REGISTER_KERNEL(fmin_grad,
64 65 66 67 68 69 70
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMinGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

PD_REGISTER_KERNEL(maximum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(minimum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
91 92 93 94 95 96 97 98 99 100

PD_REGISTER_KERNEL(elementwise_heaviside_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseHeavisideGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

101 102 103 104 105 106 107 108
PD_REGISTER_KERNEL(elementwise_pow_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}