test_nce.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17
import numpy as np
18 19 20 21 22
import unittest

import paddle.fluid as fluid
import paddle.fluid.initializer as initializer

23
from op_test import OpTest
W
wanghaoshuang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


def nce(input, weight, bias, sample_weight, labels, num_classes,
        num_sample_class):
    samples = []
    sample_labels = []
    batch_size = input.shape[0]
    num_true_class = labels.shape[1]
    for i in range(batch_size):
        w = 1 if sample_weight is None else sample_weight[i]
        for label in labels[i]:
            samples.append((i, label, True, w))
            sample_labels.append(label)
        for num in range(num_sample_class):
            samples.append((i, num, False, w))
            sample_labels.append(num)
    # forward bias
W
wanghaoshuang 已提交
41
    sample_out = np.zeros(len(samples)).astype(np.float32)
W
wanghaoshuang 已提交
42 43
    if bias is not None:
        for i in range(len(samples)):
W
wanghaoshuang 已提交
44
            sample_out[i] = bias[samples[i][1]]
W
wanghaoshuang 已提交
45 46
    # forward weight
    for i in range(len(samples)):
W
wanghaoshuang 已提交
47
        sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
W
wanghaoshuang 已提交
48 49

    # forward activation
W
wanghaoshuang 已提交
50
    sample_out = 1.0 / (1.0 + np.exp(-sample_out))
W
wanghaoshuang 已提交
51 52 53 54
    # forward cost
    out = np.zeros(batch_size).astype(np.float32)
    b = 1.0 / num_classes * num_sample_class
    for i in range(len(samples)):
W
wanghaoshuang 已提交
55
        o = sample_out[i]
W
wanghaoshuang 已提交
56 57
        cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
        out[samples[i][0]] += cost * samples[i][3]
W
wanghaoshuang 已提交
58
    return (out[:, np.newaxis], np.array(sample_out).reshape(
W
wanghaoshuang 已提交
59
        batch_size, num_sample_class + num_true_class),
W
wanghaoshuang 已提交
60 61 62 63 64 65
            np.array(sample_labels).reshape(batch_size,
                                            num_sample_class + num_true_class))


class TestNCE(OpTest):
    def generate_data(self, dim, batch_size, num_classes, num_true_class,
66
                      num_neg_samples, is_sparse):
W
wanghaoshuang 已提交
67 68 69 70 71 72
        input = np.random.randn(batch_size, dim).astype(np.float32)
        weight = np.random.randn(num_classes, dim).astype(np.float32)
        bias = np.random.randn(num_classes).astype(np.float32)
        sample_weight = np.random.randn(batch_size).astype(np.float32)
        labels = np.random.randint(0, num_classes, (batch_size, num_true_class))
        self.attrs = {
W
wanghaoshuang 已提交
73 74
            'num_total_classes': num_classes,
            'num_neg_samples': num_neg_samples,
75 76
            'custom_neg_classes': list(range(num_neg_samples)),
            'seed': 0,
77 78
            'sampler': 0,
            'is_sparse': is_sparse
W
wanghaoshuang 已提交
79 80
        }
        self.inputs = {
W
wanghaoshuang 已提交
81
            'Input': input,
W
wanghaoshuang 已提交
82
            'Label': labels,
W
wanghaoshuang 已提交
83 84
            'Weight': weight,
            'Bias': bias,
W
wanghaoshuang 已提交
85 86 87 88
            'SampleWeight': sample_weight
        }

    def set_data(self):
89
        self.generate_data(5, 5, 4, 1, 2, False)
W
wanghaoshuang 已提交
90 91

    def compute(self):
W
wanghaoshuang 已提交
92 93
        out = nce(self.inputs['Input'], self.inputs['Weight'],
                  self.inputs['Bias'], self.inputs['SampleWeight'],
W
wanghaoshuang 已提交
94 95
                  self.inputs['Label'], self.attrs['num_total_classes'],
                  self.attrs['num_neg_samples'])
W
wanghaoshuang 已提交
96
        self.outputs = {
W
wanghaoshuang 已提交
97
            'Cost': out[0],
W
wanghaoshuang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
            'SampleLogits': out[1],
            'SampleLabels': out[2]
        }

    def setUp(self):
        self.op_type = 'nce'
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
W
wanghaoshuang 已提交
111 112
        self.check_grad(
            ["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02)
W
wanghaoshuang 已提交
113 114


115
class TestNCECase1Tensor(TestNCE):
W
wanghaoshuang 已提交
116
    def set_data(self):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        self.generate_data(10, 20, 10, 2, 5, False)


class TestNCECase1SelectedRows(unittest.TestCase):
    def setUp(self):
        self.base_lr = 0.0001
        self.batch_size = 8

    @staticmethod
    def get_place():
        place = fluid.core.CPUPlace()
        return place

    @staticmethod
    def get_train_data(batch_size):
        batchs = []
        for i in range(batch_size):
            input = np.random.randn(batch_size, 10).astype(np.float32)
            labels = np.random.randint(0, 20, (batch_size, 1))
            batchs.append([input, labels])
        return batchs

    def get_optimizer(self):
        # SGD optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
        return optimizer

    def train_network(self, num_total_classes, num_neg_samples, sampler,
                      custom_dist, is_sparse):
        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=custom_dist,
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=num_neg_samples,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = self.get_optimizer()
        optimizer.minimize(avg_cost)

        return [avg_cost, [input, label]]

    def test_input_is_selected_rows(self):
        place = self.get_place()
        exe = fluid.Executor(place)

        data = self.get_train_data(self.batch_size)
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        rets = []
        # for dense
        dense_scope = fluid.core.Scope()
        dense_startup_program = fluid.framework.Program()
        dense_train_program = fluid.framework.Program()
        with fluid.scope_guard(dense_scope):
            with fluid.program_guard(dense_train_program,
                                     dense_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), False)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(dense_startup_program)
                loss_val = exe.run(dense_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        # for sparse
        sparse_scope = fluid.core.Scope()
        sparse_startup_program = fluid.framework.Program()
        sparse_train_program = fluid.framework.Program()
        with fluid.scope_guard(sparse_scope):
            with fluid.program_guard(sparse_train_program,
                                     sparse_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), True)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(sparse_startup_program)
                loss_val = exe.run(sparse_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        self.assertEqual(rets[0], rets[1])
W
wanghaoshuang 已提交
219 220 221 222


if __name__ == '__main__':
    unittest.main()