graph_reindex.py 6.7 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
18
from paddle import _legacy_C_ops
19
import paddle.utils.deprecated as deprecated
S
Siming Dai 已提交
20 21


22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.reindex_graph",
    level=1,
    reason="paddle.incubate.graph_reindex will be removed in future",
)
def graph_reindex(
    x,
    neighbors,
    count,
    value_buffer=None,
    index_buffer=None,
    flag_buffer_hashtable=False,
    name=None,
):
S
Siming Dai 已提交
37
    """
U
ustiniankw 已提交
38

S
Siming Dai 已提交
39 40 41 42
    Graph Reindex API.

    This API is mainly used in Graph Learning domain, which should be used
    in conjunction with `graph_sample_neighbors` API. And the main purpose
43
    is to reindex the ids information of the input nodes, and return the
S
Siming Dai 已提交
44 45
    corresponding graph edges after reindex.

U
ustiniankw 已提交
46
    Notes:
S
Siming Dai 已提交
47
        The number in x should be unique, otherwise it would cause potential errors.
U
ustiniankw 已提交
48 49 50
        Besides, we also support multi-edge-types neighbors reindexing. If we have different
        edge_type neighbors for x, we should concatenate all the neighbors and count of x.
        We will reindex all the nodes from 0.
S
Siming Dai 已提交
51

52 53
    Take input nodes x = [0, 1, 2] as an example.
    If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
S
Siming Dai 已提交
54 55 56 57 58 59 60 61
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1
    is [0, 4, 7], and the neighbors of 2 is [6, 7].

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
62
        count (Tensor): The neighbor count of the input nodes `x`. And the
S
Siming Dai 已提交
63
                        data type should be int32.
U
ustiniankw 已提交
64 65 66 67 68
        value_buffer (Tensor, optional): Value buffer for hashtable. The data type should
                                    be int32, and should be filled with -1. Default is None.
        index_buffer (Tensor, optional): Index buffer for hashtable. The data type should
                                    be int32, and should be filled with -1. Default is None.
        flag_buffer_hashtable (bool, optional): Whether to use buffer for hashtable to speed up.
S
Siming Dai 已提交
69 70 71
                                      Default is False. Only useful for gpu version currently.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
72

S
Siming Dai 已提交
73
    Returns:
U
ustiniankw 已提交
74 75 76 77 78
        - reindex_src (Tensor), The source node index of graph edges after reindex.
        - reindex_dst (Tensor), The destination node index of graph edges after reindex.
        - out_nodes (Tensor), The index of unique input nodes and neighbors before reindex,
          where we put the input nodes `x` in the front, and put neighbor
          nodes in the back.
S
Siming Dai 已提交
79 80 81 82

    Examples:
        .. code-block:: python

U
ustiniankw 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            import paddle

            x = [0, 1, 2]
            neighbors_e1 = [8, 9, 0, 4, 7, 6, 7]
            count_e1 = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors_e1 = paddle.to_tensor(neighbors_e1, dtype="int64")
            count_e1 = paddle.to_tensor(count_e1, dtype="int32")

            reindex_src, reindex_dst, out_nodes = \
                paddle.incubate.graph_reindex(x, neighbors_e1, count_e1)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]

            neighbors_e2 = [0, 2, 3, 5, 1]
            count_e2 = [1, 3, 1]
            neighbors_e2 = paddle.to_tensor(neighbors_e2, dtype="int64")
            count_e2 = paddle.to_tensor(count_e2, dtype="int32")

            neighbors = paddle.concat([neighbors_e1, neighbors_e2])
            count = paddle.concat([count_e1, count_e2])
            reindex_src, reindex_dst, out_nodes = \
                paddle.incubate.graph_reindex(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
S
Siming Dai 已提交
110

S
Siming Dai 已提交
111 112 113
    """
    if flag_buffer_hashtable:
        if value_buffer is None or index_buffer is None:
114 115 116 117
            raise ValueError(
                "`value_buffer` and `index_buffer` should not"
                "be None if `flag_buffer_hashtable` is True."
            )
S
Siming Dai 已提交
118 119

    if _non_static_mode():
120 121 122 123 124 125 126 127 128
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            flag_buffer_hashtable,
        )
S
Siming Dai 已提交
129 130 131
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
132 133 134
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
S
Siming Dai 已提交
135 136 137
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if flag_buffer_hashtable:
138 139 140 141 142 143
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
S
Siming Dai 已提交
144 145 146 147 148

    helper = LayerHelper("graph_reindex", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if flag_buffer_hashtable else None,
            "HashTable_Index": index_buffer if flag_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": flag_buffer_hashtable},
    )
S
Siming Dai 已提交
165
    return reindex_src, reindex_dst, out_nodes