interface.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from .process_mesh import ProcessMesh
from .process_mesh import get_current_process_mesh
18 19
from .dist_context import get_default_distributed_context
from .dist_tensor import DistributedTensor
20
from .dist_op import DistributedOperatorHelper
Z
zhaoyingli 已提交
21 22 23 24 25
from .utils import (
    verify_shard_spec,
    convert_to_dims_mapping,
    __no_shape_var_type__,
)
26 27


28
def shard_tensor(x, process_mesh=None, shard_spec=None):
29
    """
30
    Shard a tensor on a process mesh according to the shard specification.
31 32

    Args:
33
        x (Tensor): the tensor to be sharded.
34 35
        process_mesh (ProcessMesh, optional): An instance of ProcessMesh describes a mesh
            topology of the used logical processes where the tensor is sharded. If it is None,
36
            the found current process mesh will be used. And an error will be raised if the
37 38 39
            current process mesh cannot be found. Default: None.
        shard_spec (list, optional): a list to describe the sharding mapping between `x` and `process_mesh`,
            which means the dimension `i` of `x` is split across the dimension `shard_spec[i]` of `process_mesh`,
40
            where `None` means that tensor dimension is not split. For example, given a tensor wih
41 42 43 44 45 46 47 48 49 50
            the shape [6, 12] and a process mesh with the shape [2, 3] and the dimension names ["x", "y"]:
                If `shard_spec=["x", "y"]`, each shard of the tensor will have a shape [3, 4];
                If `shard_spec=["y", "x"]`, each shard of the tensor will have a shape [2, 6];
                If `shard_spec=["x", None]`, each shard of the tensor will have a shape [3, 12];
                If `shard_spec=[None, "x"]`, each shard of the tensor will have a shape [6, 4];
                If `shard_spec=["y", None]`, each shard of the tensor will have a shape [2, 12];
                If `shard_spec=[None, "y"]`, each shard of the tensor will have a shape [6, 4];
                If `shard_spec=[None, None]`, each shard of the tensor will have a shape [6, 12];
        If the `shard_spec` is None, the tensor will be replicated across all the processes of `process_mesh`.
        In the above example, the `shard_spec=None` is same as 'shard_spec=[None, None]'. Defaults: None.
51 52

    Returns:
53
        Tensor: the tensor `x` annotated with sharding information.
54 55 56 57 58

    Examples:
        .. code-block:: python

            import paddle
59
            from paddle.distributed.fleet import auto
60

61
            mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
62
            x = paddle.ones([4, 6])
63 64
            shard_spec = ["x", "y"]
            auto.shard_tensor(x, mesh, shard_spec)
65 66

    """
67 68

    if process_mesh is not None:
69 70 71 72 73
        assert isinstance(
            process_mesh, ProcessMesh
        ), "Argument process_mesh {} is not an instance of ProcessMesh".format(
            process_mesh
        )
74 75
    else:
        process_mesh = get_current_process_mesh()
76 77 78 79 80 81
        assert (
            process_mesh is not None
        ), "Specify the process mesh argument or use ProcessMesh context manager first."
    assert isinstance(
        shard_spec, list
    ), "Argument shard_spec {} is not an instance of list".format(shard_spec)
82 83 84
    dist_tensor = DistributedTensor(x)
    serial_tensor = dist_tensor.serial_tensor
    dist_tensor.dist_attr.process_mesh = process_mesh
Z
zhaoyingli 已提交
85
    if serial_tensor.type in __no_shape_var_type__:
86 87 88 89
        tensor_shape = []
    else:
        tensor_shape = serial_tensor.shape
    if shard_spec is not None:
90 91 92 93 94
        assert verify_shard_spec(
            shard_spec, tensor_shape, process_mesh
        ), "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format(
            serial_tensor.name, shard_spec, tensor_shape, process_mesh
        )
95
        dist_tensor.dist_attr.dims_mapping = convert_to_dims_mapping(
96 97
            shard_spec, process_mesh
        )
98 99 100 101
    if process_mesh is not None:
        dist_tensor.dist_attr.mark_annotated("process_mesh")
    if shard_spec is not None:
        dist_tensor.dist_attr.mark_annotated("dims_mapping")
102 103
    default_dist_ctx = get_default_distributed_context()
    default_dist_ctx.add_dist_tensor_for_program(dist_tensor)
104
    dist_tensor = default_dist_ctx.get_dist_tensor_for_program(x)
105 106 107
    return x


108
def shard_op(op, process_mesh=None, in_shard_specs=None, out_shard_specs=None):
109
    """
110
    Shard an operation on a process mesh according to its input and output shard specification.
111 112

    Args:
113 114 115 116 117 118 119 120 121
        op (Callable): a callable operator or module to be sharded.
        process_mesh (ProcessMesh, optional): An instance of ProcessMesh describes a mesh
            topology of the used logical processes where the op is sharded. All of its inputs and
            outputs are sharded by this process mesh. If it is None, the found current process mesh
            will be used. And an error will be raised if the current process mesh cannot be found.
            Default: None.
        in_shard_specs (list of list, optional): a list of list to describe the sharding specifications
            for the inputs. Each item of `in_shard_specs` is a `shard_spec` between the correspoinding input
            and `process_mesh`. If one item is None, the cooresponding input is replicated across all processes
122
            If it is None, all inputs are replicated accross all processes. Note that the lenght of the
123 124 125 126 127
            `in_shard_specs` should be equal to the actual number of inputs when calling this operation.
            Default: None.
        out_shard_specs (list of list, optional): a list of list to describe the sharding specifications
            for the outputs. Each item of `out_shard_specs` is a `shard_spec` between the correspoinding output
            and `process_mesh`. If one item is None, the cooresponding output is replicated across all processes
128
            If it is None, all outputs are replicated accross all processes. Note that the lenght of the
129 130
            `in_shard_specs` should be equal to the actual number of inputs when calling this operation.
            Default: None. Default: None.
131 132

    Returns:
133
        Outputs of `op`, each of which is annotated with sharding information.
134 135 136 137 138

    Examples:
        .. code-block:: python

            import paddle
139
            from paddle.distributed.fleet import auto
140

141 142
            x = paddle.ones([4, 6])
            y = paddle.zeros([4, 6])
143 144 145 146
            mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
            dist_add = auto.shard_op(paddle.add,
                                     in_shard_specs=[["x", "y"], ["y", None]],
                                     out_shard_specs=[[None, "x"]])
147
            dist_add(x, y)
148 149

    """
150 151

    if process_mesh is not None:
152 153 154 155 156
        assert isinstance(
            process_mesh, ProcessMesh
        ), "Argument process_mesh {} is not an instance of ProcessMesh".format(
            process_mesh
        )
157 158
    else:
        process_mesh = get_current_process_mesh()
159 160 161
        assert (
            process_mesh is not None
        ), "Specify the process mesh argument or use ProcessMesh context manager first."
162 163
    in_dims_mappings = []
    if in_shard_specs is not None:
164 165 166 167 168 169
        assert all(
            (isinstance(shard_spec, list) or shard_spec is None)
            for shard_spec in in_shard_specs
        ), "in_shard_spec {} is not a list of list or None".format(
            in_shard_specs
        )
170 171 172
        for shard_spec in in_shard_specs:
            if shard_spec is not None:
                in_dims_mappings.append(
173 174
                    convert_to_dims_mapping(shard_spec, process_mesh)
                )
175 176 177 178
            else:
                in_dims_mappings.append(None)
    out_dims_mappings = []
    if out_shard_specs is not None:
179 180 181 182 183 184
        assert all(
            (isinstance(shard_spec, list) or shard_spec is None)
            for shard_spec in out_shard_specs
        ), "out_shard_spec {} is not a list of list or None".format(
            out_shard_specs
        )
185 186 187
        for shard_spec in out_shard_specs:
            if shard_spec is not None:
                out_dims_mappings.append(
188 189
                    convert_to_dims_mapping(shard_spec, process_mesh)
                )
190 191
            else:
                out_dims_mappings.append(None)
192 193 194
    op = DistributedOperatorHelper(
        op, process_mesh, in_dims_mappings, out_dims_mappings
    )
195 196 197
    return op


198 199 200
_g_recompute_idx = -1


201
def recompute(op):
202 203 204
    global _g_recompute_idx
    _g_recompute_idx += 1

205 206 207 208 209 210 211 212 213 214 215 216 217
    class RecomputeOperator:
        def __init__(self, op):
            self._op = op

        def __call__(self, *args, **kwargs):
            default_prog = paddle.fluid.default_main_program()
            cur_block = default_prog.current_block()
            op_size = len(cur_block.ops)
            output = self._op(*args, **kwargs)
            new_op_size = len(cur_block.ops)

            for idx in range(op_size, new_op_size):
                op = cur_block.ops[idx]
218 219 220
                op._set_attr(
                    'op_namescope', "/auto_parallel/rc_" + str(_g_recompute_idx)
                )
221 222 223 224 225 226

            return output

    return RecomputeOperator(op)


227 228 229
_g_collections = {}


230
class CollectionNames:
231
    FETCHES = "fetches"
232
    LOGGING = "logging"
233 234 235 236 237 238 239 240 241 242


def get_collection(name):
    collection = _g_collections.get(name, None)
    if collection is None:
        collection = []
        _g_collections[name] = collection
    return _g_collections[name]


243
def add_to_collection(collection_name, value, name=None):
244 245
    if collection_name not in _g_collections:
        _g_collections[collection_name] = []
246
    if name is not None:
Z
zhaoyingli 已提交
247
        for _, v in _g_collections[collection_name]:
248 249
            if v == value:
                return
250
        _g_collections[collection_name].append((name, value))
251
    else:
Z
zhaoyingli 已提交
252
        for _, v in _g_collections[collection_name]:
253 254
            if v == value:
                return
255
        _g_collections[collection_name].append((None, value))
256 257


258
def fetch(tensor, name=None, logging=False):
259
    add_to_collection(CollectionNames.FETCHES, tensor, name)
260 261
    if logging:
        add_to_collection(CollectionNames.LOGGING, tensor, name)