linear.py 2.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# example 1: save layer
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt

BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4

IMAGE_SIZE = 784
CLASS_NUM = 10


# define a random dataset
class RandomDataset(paddle.io.Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        image = np.random.random([IMAGE_SIZE]).astype('float32')
36
        label = np.random.randint(0, CLASS_NUM - 1, (1,)).astype('int64')
37 38 39 40 41 42 43 44
        return image, label

    def __len__(self):
        return self.num_samples


class LinearNet(nn.Layer):
    def __init__(self):
45
        super().__init__()
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear(x)


def train(layer, loader, loss_fn, opt):
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)
            loss.backward()
            opt.step()
            opt.clear_grad()


# 1. train & save model.

# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
72 73 74
loader = paddle.io.DataLoader(
    dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2
)
75 76 77 78 79 80 81

# train
train(layer, loader, loss_fn, adam)

# save
path = "linear/linear"
paddle.jit.save(layer, path)