notest_understand_sentiment.py 13.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
from paddle.fluid.layers.device import get_places
18
import unittest
19
import paddle.fluid as fluid
20
import paddle
21
import contextlib
22
import math
23
import numpy as np
24
import sys
武毅 已提交
25
import os
26 27 28 29


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
30 31
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
48
    avg_cost = fluid.layers.mean(cost)
49
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
50
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
51 52


Y
Yu Yang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
                 lstm_size=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
88
    avg_cost = fluid.layers.mean(cost)
Y
Yu Yang 已提交
89 90 91 92
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
93 94 95
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
96 97 98 99 100 101
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

102 103
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
104 105 106
    # add bias attr

    # TODO(qijun) linear act
107 108
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
109 110 111 112

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
113 114
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
115 116 117
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

118 119
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
120

121 122 123 124
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
125
    avg_cost = fluid.layers.mean(cost)
126
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
127
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
128

129

武毅 已提交
130 131 132 133 134 135
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
136 137
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
138 139 140
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
141 142 143
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
144 145 146 147 148

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
X
Xin Pan 已提交
149
        raise NotImplementedError()
150 151

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
152
    adagrad.minimize(cost)
Q
QI JUN 已提交
153 154 155 156 157

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
158
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
159
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
160
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
161

武毅 已提交
162 163 164
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

165
        for pass_id in range(PASS_NUM):
武毅 已提交
166 167 168 169
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
170
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
184 185
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
186 187 188 189
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
190
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
191
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
192 193
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
194
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
195
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
196 197 198 199 200 201 202 203
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
204 205


L
Liu Yiqun 已提交
206
def infer(word_dict, use_cuda, save_dirname=None):
207 208 209 210 211 212
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

213 214 215 216 217 218 219 220 221 222 223
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
224
        # Setup input by creating LoDTensor to represent sequence of words.
225 226
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
227
        # look up for the corresponding word vector.
228
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
229 230 231 232
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
233 234
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
235 236
        base_shape = [1]
        # The range of random integers is [low, high]
K
Kexin Zhao 已提交
237
        tensor_words = fluid.create_random_int_lodtensor(
238 239 240 241 242
            recursive_seq_lens,
            base_shape,
            place,
            low=0,
            high=word_dict_len - 1)
243 244 245 246 247 248 249 250

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
251
        print(results[0].recursive_sequence_lengths())
252
        np_data = np.array(results[0])
253 254
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
255 256


257
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
258 259 260
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

261 262 263 264 265 266
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
267
    infer(word_dict, use_cuda, save_dirname)
268 269


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
286 287 288 289
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
290
                save_dirname="understand_sentiment_conv.inference.model")
291

292 293 294 295 296 297 298 299 300
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
301 302
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
303 304 305 306 307
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
308

309 310 311 312 313 314 315 316
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

317 318
    def test_conv_gpu(self):
        with self.new_program_scope():
319 320 321 322
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
323
                save_dirname="understand_sentiment_conv.inference.model")
324 325 326 327 328 329 330 331

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
332

333
    @unittest.skip(reason="make CI faster")
334 335
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
336 337 338 339 340
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
Q
QI JUN 已提交
341

342 343 344 345 346 347 348 349
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Y
Yu Yang 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=False)

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
367 368

if __name__ == '__main__':
369
    unittest.main()