machine_translation.py 12.8 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""seq2seq model for fluid."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import distutils.util

import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--embedding_dim",
    type=int,
    default=512,
    help="The dimension of embedding table. (default: %(default)d)")
parser.add_argument(
    "--encoder_size",
    type=int,
    default=512,
    help="The size of encoder bi-rnn unit. (default: %(default)d)")
parser.add_argument(
    "--decoder_size",
    type=int,
    default=512,
    help="The size of decoder rnn unit. (default: %(default)d)")
parser.add_argument(
    "--batch_size",
    type=int,
    default=16,
    help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
    "--dict_size",
    type=int,
    default=30000,
    help="The dictionary capacity. Dictionaries of source sequence and "
    "target dictionary have same capacity. (default: %(default)d)")
parser.add_argument(
    "--pass_num",
    type=int,
    default=2,
    help="The pass number to train. (default: %(default)d)")
parser.add_argument(
    "--learning_rate",
    type=float,
    default=0.0002,
    help="Learning rate used to train the model. (default: %(default)f)")
parser.add_argument(
    "--infer_only", action='store_true', help="If set, run forward only.")
parser.add_argument(
    "--beam_size",
    type=int,
    default=3,
    help="The width for beam searching. (default: %(default)d)")
parser.add_argument(
    "--use_gpu",
    type=distutils.util.strtobool,
    default=True,
    help="Whether to use gpu. (default: %(default)d)")
parser.add_argument(
    "--max_length",
    type=int,
    default=250,
    help="The maximum length of sequence when doing generation. "
    "(default: %(default)d)")


def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
    def linear(inputs):
        return fluid.layers.fc(input=inputs, size=size, bias_attr=True)

    forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))

    cell_t = fluid.layers.sums(input=[
        fluid.layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = fluid.layers.elementwise_mul(
        x=output_gate, y=fluid.layers.tanh(x=cell_t))

    return hidden_t, cell_t


def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
                   target_dict_dim, is_generating, beam_size, max_length):
    """Construct a seq2seq network."""

    def bi_lstm_encoder(input_seq, gate_size):
        # Linear transformation part for input gate, output gate, forget gate
        # and cell activation vectors need be done outside of dynamic_lstm.
        # So the output size is 4 times of gate_size.
        input_forward_proj = fluid.layers.fc(input=input_seq,
                                             size=gate_size * 4,
                                             act=None,
                                             bias_attr=False)
        forward, _ = fluid.layers.dynamic_lstm(
            input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
        input_reversed_proj = fluid.layers.fc(input=input_seq,
                                              size=gate_size * 4,
                                              act=None,
                                              bias_attr=False)
        reversed, _ = fluid.layers.dynamic_lstm(
            input=input_reversed_proj,
            size=gate_size * 4,
            is_reverse=True,
            use_peepholes=False)
        return forward, reversed

    src_word_idx = fluid.layers.data(
        name='source_sequence', shape=[1], dtype='int64', lod_level=1)

    src_embedding = fluid.layers.embedding(
        input=src_word_idx,
        size=[source_dict_dim, embedding_dim],
        dtype='float32')

    src_forward, src_reversed = bi_lstm_encoder(
        input_seq=src_embedding, gate_size=encoder_size)

    encoded_vector = fluid.layers.concat(
        input=[src_forward, src_reversed], axis=1)

    encoded_proj = fluid.layers.fc(input=encoded_vector,
                                   size=decoder_size,
                                   bias_attr=False)

    backward_first = fluid.layers.sequence_pool(
        input=src_reversed, pool_type='first')

    decoder_boot = fluid.layers.fc(input=backward_first,
                                   size=decoder_size,
                                   bias_attr=False,
                                   act='tanh')

    def lstm_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
                                    decoder_boot, decoder_size):
        def simple_attention(encoder_vec, encoder_proj, decoder_state):
            decoder_state_proj = fluid.layers.fc(input=decoder_state,
                                                 size=decoder_size,
                                                 bias_attr=False)
            decoder_state_expand = fluid.layers.sequence_expand(
                x=decoder_state_proj, y=encoder_proj)
            concated = fluid.layers.concat(
                input=[encoder_proj, decoder_state_expand], axis=1)
            attention_weights = fluid.layers.fc(input=concated,
                                                size=1,
                                                act='tanh',
                                                bias_attr=False)
            attention_weights = fluid.layers.sequence_softmax(
                input=attention_weights)
            weigths_reshape = fluid.layers.reshape(
                x=attention_weights, shape=[-1])
            scaled = fluid.layers.elementwise_mul(
                x=encoder_vec, y=weigths_reshape, axis=0)
            context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
            return context

        rnn = fluid.layers.DynamicRNN()

        cell_init = fluid.layers.fill_constant_batch_size_like(
            input=decoder_boot,
            value=0.0,
            shape=[-1, decoder_size],
            dtype='float32')
        cell_init.stop_gradient = False

        with rnn.block():
            current_word = rnn.step_input(target_embedding)
            encoder_vec = rnn.static_input(encoder_vec)
            encoder_proj = rnn.static_input(encoder_proj)
            hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
            cell_mem = rnn.memory(init=cell_init)
            context = simple_attention(encoder_vec, encoder_proj, hidden_mem)
            decoder_inputs = fluid.layers.concat(
                input=[context, current_word], axis=1)
            h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
            rnn.update_memory(hidden_mem, h)
            rnn.update_memory(cell_mem, c)
            out = fluid.layers.fc(input=h,
                                  size=target_dict_dim,
                                  bias_attr=True,
                                  act='softmax')
            rnn.output(out)
        return rnn()

    if not is_generating:
        trg_word_idx = fluid.layers.data(
            name='target_sequence', shape=[1], dtype='int64', lod_level=1)

        trg_embedding = fluid.layers.embedding(
            input=trg_word_idx,
            size=[target_dict_dim, embedding_dim],
            dtype='float32')

        prediction = lstm_decoder_with_attention(trg_embedding, encoded_vector,
                                                 encoded_proj, decoder_boot,
                                                 decoder_size)
        label = fluid.layers.data(
            name='label_sequence', shape=[1], dtype='int64', lod_level=1)
        cost = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        feeding_list = ["source_sequence", "target_sequence", "label_sequence"]

        return avg_cost, feeding_list


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    lod_t = core.LoDTensor()
    lod_t.set(flattened_data, place)
    lod_t.set_lod([lod])
    return lod_t, lod[-1]


def lodtensor_to_ndarray(lod_tensor):
    dims = lod_tensor.get_dims()
    ndarray = np.zeros(shape=dims).astype('float32')
    for i in xrange(np.product(dims)):
        ndarray.ravel()[i] = lod_tensor.get_float_element(i)
    return ndarray


def train():
    avg_cost, feeding_list = seq_to_seq_net(
        args.embedding_dim,
        args.encoder_size,
        args.decoder_size,
        args.dict_size,
        args.dict_size,
        False,
        beam_size=args.beam_size,
        max_length=args.max_length)

    # clone from default main program
    inference_program = fluid.default_main_program().clone()

    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimizer.minimize(avg_cost)

    fluid.memory_optimize(fluid.default_main_program())

    train_batch_generator = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
        batch_size=args.batch_size)

    test_batch_generator = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
        batch_size=args.batch_size)

    place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
    exe = Executor(place)
    exe.run(framework.default_startup_program())

    def do_validation():
        total_loss = 0.0
        count = 0
        for batch_id, data in enumerate(test_batch_generator()):
            src_seq = to_lodtensor(map(lambda x: x[0], data), place)[0]
            trg_seq = to_lodtensor(map(lambda x: x[1], data), place)[0]
            lbl_seq = to_lodtensor(map(lambda x: x[2], data), place)[0]

            fetch_outs = exe.run(inference_program,
                                 feed={
                                     feeding_list[0]: src_seq,
                                     feeding_list[1]: trg_seq,
                                     feeding_list[2]: lbl_seq
                                 },
                                 fetch_list=[avg_cost],
                                 return_numpy=False)

            total_loss += lodtensor_to_ndarray(fetch_outs[0])[0]
            count += 1

        return total_loss / count

    for pass_id in xrange(args.pass_num):
        pass_start_time = time.time()
        words_seen = 0
        for batch_id, data in enumerate(train_batch_generator()):
            src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
            words_seen += word_num
            trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
            words_seen += word_num
            lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)

            fetch_outs = exe.run(framework.default_main_program(),
                                 feed={
                                     feeding_list[0]: src_seq,
                                     feeding_list[1]: trg_seq,
                                     feeding_list[2]: lbl_seq
                                 },
                                 fetch_list=[avg_cost])

            avg_cost_val = np.array(fetch_outs[0])
            print('pass_id=%d, batch_id=%d, train_loss: %f' %
                  (pass_id, batch_id, avg_cost_val))

        pass_end_time = time.time()
        test_loss = do_validation()
        time_consumed = pass_end_time - pass_start_time
        words_per_sec = words_seen / time_consumed
        print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
              (pass_id, test_loss, words_per_sec, time_consumed))


def infer():
    pass


if __name__ == '__main__':
    args = parser.parse_args()
    if args.infer_only:
        infer()
    else:
        train()