conv_op_npu.cc 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/conv_op.h"
16
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
17 18 19 20

namespace paddle {
namespace operators {

21
using NPUDeviceContext = platform::NPUDeviceContext;
22
static void CastToFP16(const framework::ExecutionContext& ctx,
23
                       const aclrtStream& stream,
24 25
                       const phi::DenseTensor& in,
                       phi::DenseTensor* out) {
26 27 28 29 30 31 32 33 34 35
  out->mutable_data<paddle::platform::float16>(ctx.GetPlace());
  NpuOpRunner runner;
  runner.SetType("Cast")
      .AddInput(in)
      .AddOutput(*out)
      .AddAttr("dst_type", ACL_FLOAT16)
      .Run(stream);
}

static void CastToFP32(const framework::ExecutionContext& ctx,
36
                       const aclrtStream& stream,
37 38
                       const phi::DenseTensor& in,
                       phi::DenseTensor* out) {
39 40 41 42 43 44 45 46
  out->mutable_data<float>(ctx.GetPlace());
  NpuOpRunner runner;
  runner.SetType("Cast")
      .AddInput(in)
      .AddOutput(*out)
      .AddAttr("dst_type", ACL_FLOAT)
      .Run(stream);
}
47

48
template <typename T>
49 50
class DepthwiseConvNPUKernel : public framework::OpKernel<T> {
 public:
51
  void Compute(const framework::ExecutionContext& ctx) const override {
52 53 54
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("Input");
    const phi::DenseTensor* filter = ctx.Input<phi::DenseTensor>("Filter");
    phi::DenseTensor* output = ctx.Output<phi::DenseTensor>("Output");
55
    output->mutable_data<T>(ctx.GetPlace());
56

57 58 59 60 61 62
    const std::vector<int> stride = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> padding = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilation = ctx.Attr<std::vector<int>>("dilations");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
63 64 65 66 67 68 69 70 71 72 73 74 75 76

    const bool channel_last = data_format == "NHWC";
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1],
          input->dims()[input->dims().size() - 1],
          platform::errors::InvalidArgument(
              "ShapeError: The output channels must be equal to the "
              "input channels. But receivced output channel number is %d "
              "and input channel number is %d",
              output->dims()[output->dims().size() - 1],
              input->dims()[input->dims().size() - 1]));
    } else {
      PADDLE_ENFORCE_EQ(
77 78
          output->dims()[1],
          input->dims()[1],
79 80 81 82
          platform::errors::InvalidArgument(
              "ShapeError: The output channels must be equal to the "
              "input channels. But receivced output channel number is %d "
              "and input channel number is %d",
83 84
              output->dims()[1],
              input->dims()[1]));
85 86 87 88 89 90 91 92
    }

    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
93
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
94
    } else {
95
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
96
    }
97
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
98

99
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
100 101
    UpdatePaddingAndDilation(
        &padding, &dilation, padding_algorithm, in_data_dims, stride, ksize);
102 103 104 105

    std::vector<int> strides(4, 1);
    std::vector<int> dilations(4, 1);

106
    phi::DenseTensor input_tensor, output_tensor;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    input_tensor.ShareDataWith(*input);
    output_tensor.ShareDataWith(*output);

    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_tensor.set_layout(DataLayout::kNHWC);
      strides[1] = stride[0];
      strides[2] = stride[1];
      dilations[1] = dilation[0];
      dilations[2] = dilation[1];
    } else {
      strides[2] = stride[0];
      strides[3] = stride[1];
      dilations[2] = dilation[0];
      dilations[3] = dilation[1];
    }

124 125 126
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

    // Transform filter (n, 1, h, w) --> (1, n, h, w)
127
    phi::DenseTensor transformed_filter(filter->type());
128 129 130 131
    transformed_filter.mutable_data<T>({filter->dims()[1],
                                        filter->dims()[0],
                                        filter->dims()[2],
                                        filter->dims()[3]},
132 133 134 135 136 137
                                       ctx.device_context().GetPlace());
    std::vector<int> perm = {1, 0, 2, 3};
    const auto& runner_trans = NpuOpRunner(
        "TransposeD", {*filter}, {transformed_filter}, {{"perm", perm}});
    runner_trans.Run(stream);

138 139 140 141 142 143 144
    const auto& runner = NpuOpRunner("DepthwiseConv2D",
                                     {input_tensor, transformed_filter},
                                     {output_tensor},
                                     {{"strides", strides},
                                      {"dilations", dilations},
                                      {"pads", padding},
                                      {"data_format", data_format}});
145 146 147 148
    runner.Run(stream);
  }
};

149 150 151
template <typename T>
class DepthwiseConvGradNPUKernel : public framework::OpKernel<T> {
 public:
152
  void Compute(const framework::ExecutionContext& ctx) const override {
153 154 155 156 157 158 159 160
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("Input");
    const phi::DenseTensor* filter = ctx.Input<phi::DenseTensor>("Filter");
    auto output_grad =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Output"));
    auto input_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Input"));
    auto filter_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Filter"));
161

162 163 164 165 166 167
    const std::vector<int> stride = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> padding = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilation = ctx.Attr<std::vector<int>>("dilations");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
168 169 170 171 172 173 174 175 176 177

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
178
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
179
    } else {
180
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
181
    }
182
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
183

184
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
185 186
    UpdatePaddingAndDilation(
        &padding, &dilation, padding_algorithm, in_data_dims, stride, ksize);
187

188 189
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

190
    // Transform filter (n, 1, h, w) --> (1, n, h, w)
191
    phi::DenseTensor transformed_filter(filter->type());
192 193 194 195
    transformed_filter.mutable_data<T>({filter->dims()[1],
                                        filter->dims()[0],
                                        filter->dims()[2],
                                        filter->dims()[3]},
196
                                       ctx.device_context().GetPlace());
197 198 199 200 201 202 203 204 205
    std::vector<int> perm = {1, 0, 2, 3};
    const auto& runner_trans = NpuOpRunner(
        "TransposeD", {*filter}, {transformed_filter}, {{"perm", perm}});
    runner_trans.Run(stream);

    // construct NPU attr
    std::vector<int> strides(4, 1);
    std::vector<int> dilations(4, 1);

206
    phi::DenseTensor input_tensor, output_grad_tensor;
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    input_tensor.ShareDataWith(*input);
    output_grad_tensor.ShareDataWith(*output_grad);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_grad_tensor.set_layout(DataLayout::kNHWC);
      strides[1] = stride[0];
      strides[2] = stride[1];
      dilations[1] = dilation[0];
      dilations[2] = dilation[1];
    } else {
      strides[2] = stride[0];
      strides[3] = stride[1];
      dilations[2] = dilation[0];
      dilations[3] = dilation[1];
    }

    if (filter_grad) {
224
      filter_grad->mutable_data<T>(ctx.GetPlace());
225

226
      PADDLE_ENFORCE_EQ(
227 228
          (dilations[2] == 1 && dilations[3] == 1),
          true,
229 230 231
          platform::errors::InvalidArgument(
              "dilation_h and dilation_w in DepthwiseConv2DBackpropFilterD "
              "must be equal to 1, but got dilation_h %d, dilation_w %d",
232 233
              dilation[2],
              dilation[3]));
234 235 236 237 238 239

      NpuOpRunner runner;
      runner.SetType("DepthwiseConv2DBackpropFilterD")
          .AddInput(input_tensor)
          .AddInput(output_grad_tensor)
          .AddOutput(*filter_grad)
240
          .AddAttr("filter_size", phi::vectorize(transformed_filter.dims()))
241 242 243 244 245
          .AddAttr("strides", strides)
          .AddAttr("dilations", dilations)
          .AddAttr("pads", padding)
          .AddAttr("data_format", data_format)
          .Run(stream);
246 247
    }
    if (input_grad) {
248
      input_grad->mutable_data<T>(ctx.GetPlace());
249
      phi::DenseTensor input_grad_tensor;
250 251 252 253
      input_grad_tensor.ShareDataWith(*input_grad);
      if (channel_last) {
        input_grad_tensor.set_layout(DataLayout::kNHWC);
      }
254 255 256 257 258
      NpuOpRunner runner;
      runner.SetType("DepthwiseConv2DBackpropInputD")
          .AddInput(transformed_filter)
          .AddInput(output_grad_tensor)
          .AddOutput(input_grad_tensor)
259
          .AddAttr("input_size", phi::vectorize(input->dims()))
260 261 262 263 264
          .AddAttr("strides", strides)
          .AddAttr("dilations", dilations)
          .AddAttr("pads", padding)
          .AddAttr("data_format", data_format)
          .Run(stream);
265 266 267 268
    }
  }
};

269 270 271 272
template <typename T>
class NPUConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
273 274 275
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("Input");
    auto* filter = ctx.Input<phi::DenseTensor>("Filter");
    auto* output = ctx.Output<phi::DenseTensor>("Output");
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
294
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
295
    } else {
296
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
297
    }
298
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
299

300
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
301 302
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
303 304 305 306

    std::vector<int> strides_vec(4, 1);
    std::vector<int> dilations_vec(4, 1);

307
    phi::DenseTensor input_tensor, output_tensor;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    input_tensor.ShareDataWith(*input);
    output_tensor.ShareDataWith(*output);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_tensor.set_layout(DataLayout::kNHWC);
      strides_vec[1] = strides[0];
      strides_vec[2] = strides[1];
      dilations_vec[1] = dilations[0];
      dilations_vec[2] = dilations[1];
    } else {
      strides_vec[2] = strides[0];
      strides_vec[3] = strides[1];
      dilations_vec[2] = dilations[0];
      dilations_vec[3] = dilations[1];
    }

324
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
325 326 327 328 329 330 331 332
    const auto& runner = NpuOpRunner("Conv2D",
                                     {input_tensor, *filter},
                                     {output_tensor},
                                     {{"strides", strides_vec},
                                      {"pads", paddings},
                                      {"dilations", dilations_vec},
                                      {"groups", groups},
                                      {"data_format", data_format}});
333
    runner.Run(stream);
334 335 336 337 338 339 340
  }
};

template <typename T>
class NPUConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
341 342 343 344 345 346 347 348
    auto input = ctx.Input<phi::DenseTensor>("Input");
    auto filter = ctx.Input<phi::DenseTensor>("Filter");
    auto output_grad =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Output"));
    auto input_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Input"));
    auto filter_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Filter"));
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
367
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
368
    } else {
369
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
370
    }
371
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
372

373
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
374 375
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
376 377 378 379

    std::vector<int> strides_vec(4, 1);
    std::vector<int> dilations_vec(4, 1);

380
    phi::DenseTensor input_tensor, output_grad_tensor;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    input_tensor.ShareDataWith(*input);
    output_grad_tensor.ShareDataWith(*output_grad);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_grad_tensor.set_layout(DataLayout::kNHWC);
      strides_vec[1] = strides[0];
      strides_vec[2] = strides[1];
      dilations_vec[1] = dilations[0];
      dilations_vec[2] = dilations[1];
    } else {
      strides_vec[2] = strides[0];
      strides_vec[3] = strides[1];
      dilations_vec[2] = dilations[0];
      dilations_vec[3] = dilations[1];
    }

397
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
398
    if (filter_grad) {
399
      filter_grad->mutable_data<T>(ctx.GetPlace());
400
      std::vector<int> filter_shape_vec = phi::vectorize<int>(filter->dims());
401

402
      phi::DenseTensor filter_grad_fp32(phi::DataType::FLOAT32);
403 404 405 406 407 408 409 410 411
      filter_grad_fp32.Resize(filter_grad->dims());

      if (framework::TransToProtoVarType(input->dtype()) ==
          framework::proto::VarType::FP16) {
        CastToFP32(ctx, stream, *filter_grad, &filter_grad_fp32);
      } else {
        filter_grad_fp32.ShareDataWith(*filter_grad);
      }

412 413 414 415 416 417 418 419 420
      const auto& runner = NpuOpRunner("Conv2DBackpropFilterD",
                                       {input_tensor, output_grad_tensor},
                                       {filter_grad_fp32},
                                       {{"filter_size", filter_shape_vec},
                                        {"strides", strides_vec},
                                        {"pads", paddings},
                                        {"dilations", dilations_vec},
                                        {"groups", groups},
                                        {"data_format", data_format}});
421
      runner.Run(stream);
422 423 424 425 426

      if (framework::TransToProtoVarType(input->dtype()) ==
          framework::proto::VarType::FP16) {
        CastToFP16(ctx, stream, filter_grad_fp32, filter_grad);
      }
427 428 429
    }
    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
430
      std::vector<int> input_shape_vec = phi::vectorize<int>(input->dims());
431

432
      phi::DenseTensor input_grad_tensor;
433 434 435 436
      input_grad_tensor.ShareDataWith(*input_grad);
      if (channel_last) {
        input_grad_tensor.set_layout(DataLayout::kNHWC);
      }
437 438 439 440 441 442 443 444 445
      const auto& runner = NpuOpRunner("Conv2DBackpropInputD",
                                       {*filter, output_grad_tensor},
                                       {input_grad_tensor},
                                       {{"input_size", input_shape_vec},
                                        {"strides", strides_vec},
                                        {"pads", paddings},
                                        {"dilations", dilations_vec},
                                        {"groups", groups},
                                        {"data_format", data_format}});
446
      runner.Run(stream);
447 448 449
    }
  }
};
450 451 452 453 454

template <typename T>
class NPUConv3dKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
455 456 457
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("Input");
    const phi::DenseTensor* filter = ctx.Input<phi::DenseTensor>("Filter");
    phi::DenseTensor* output = ctx.Output<phi::DenseTensor>("Output");
458 459 460 461 462 463 464 465 466

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

467 468
    PADDLE_ENFORCE_EQ(data_format,
                      "NCDHW",
469 470 471 472 473 474
                      platform::errors::Unimplemented(
                          "the data_format must be NCDHW in "
                          "the npu kernel of conv3d, but got data_format "
                          "= [%s]",
                          data_format));

475 476
    PADDLE_ENFORCE_EQ(groups,
                      1,
477 478 479 480 481
                      platform::errors::Unimplemented(
                          "the groups must be 1 in "
                          "the npu kernel of conv3d, but got groups "
                          "= [%d]",
                          groups));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

    output->mutable_data<T>(ctx.GetPlace());

    auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto input_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(input->dims(), dev_ctx);
    auto filter_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(filter->dims(), dev_ctx);
    auto output_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(output->dims(), dev_ctx);

    input_tensor.ShareDataWith(*input);
    filter_tensor.ShareDataWith(*filter);
    output_tensor.ShareDataWith(*output);

    input_tensor.set_layout(DataLayout::kNCDHW);
    filter_tensor.set_layout(DataLayout::kNCDHW);
    output_tensor.set_layout(DataLayout::kNCDHW);

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
511 512
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
513 514 515 516 517 518 519 520 521 522 523 524

    std::vector<int> strides_vec(5, 1);
    std::vector<int> dilations_vec(5, 1);

    strides_vec[2] = strides[0];
    strides_vec[3] = strides[1];
    strides_vec[4] = strides[2];
    dilations_vec[2] = dilations[0];
    dilations_vec[3] = dilations[1];
    dilations_vec[4] = dilations[2];

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
525 526 527 528 529 530 531 532
    const auto& runner = NpuOpRunner("Conv3D",
                                     {input_tensor, filter_tensor},
                                     {output_tensor},
                                     {{"strides", strides_vec},
                                      {"pads", paddings},
                                      {"dilations", dilations_vec},
                                      {"groups", groups},
                                      {"data_format", data_format}});
533 534 535 536 537 538 539 540
    runner.Run(stream);
  }
};

template <typename T>
class NPUConv3dGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
541 542 543 544 545 546 547 548
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("Input");
    const phi::DenseTensor* filter = ctx.Input<phi::DenseTensor>("Filter");
    const phi::DenseTensor* output_grad =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Output"));
    phi::DenseTensor* input_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Input"));
    phi::DenseTensor* filter_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Filter"));
549 550 551 552 553 554 555 556 557

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

558 559
    PADDLE_ENFORCE_EQ(data_format,
                      "NCDHW",
560 561 562 563 564 565
                      platform::errors::Unimplemented(
                          "the data_format must be NCDHW in "
                          "the npu kernel of conv3d, but got data_format "
                          "= [%s]",
                          data_format));

566 567
    PADDLE_ENFORCE_EQ(groups,
                      1,
568 569 570 571 572
                      platform::errors::Unimplemented(
                          "the groups must be 1 in "
                          "the npu kernel of conv3d, but got groups "
                          "= [%d]",
                          groups));
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

    auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto input_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(input->dims(), dev_ctx);
    auto filter_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(filter->dims(), dev_ctx);
    auto output_grad_tensor = ctx.AllocateTmpTensor<T, NPUDeviceContext>(
        output_grad->dims(), dev_ctx);

    input_tensor.ShareDataWith(*input);
    filter_tensor.ShareDataWith(*filter);
    output_grad_tensor.ShareDataWith(*output_grad);

    input_tensor.set_layout(DataLayout::kNCDHW);
    filter_tensor.set_layout(DataLayout::kNCDHW);
    output_grad_tensor.set_layout(DataLayout::kNCDHW);

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
600 601
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    std::vector<int> strides_vec(5, 1);
    std::vector<int> dilations_vec(5, 1);

    strides_vec[2] = strides[0];
    strides_vec[3] = strides[1];
    strides_vec[4] = strides[2];
    dilations_vec[2] = dilations[0];
    dilations_vec[3] = dilations[1];
    dilations_vec[4] = dilations[2];

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
      std::vector<int> filter_shape_vec = phi::vectorize<int>(filter->dims());

619 620 621
      phi::DenseTensor filter_grad_tensor =
          ctx.AllocateTmpTensor<T, NPUDeviceContext>(filter_grad->dims(),
                                                     dev_ctx);
622 623 624
      filter_grad_tensor.ShareDataWith(*filter_grad);
      filter_grad_tensor.set_layout(DataLayout::kNCDHW);

625 626 627 628 629 630 631 632 633
      const auto& runner = NpuOpRunner("Conv3DBackpropFilterD",
                                       {input_tensor, output_grad_tensor},
                                       {filter_grad_tensor},
                                       {{"filter_size", filter_shape_vec},
                                        {"strides", strides_vec},
                                        {"pads", paddings},
                                        {"dilations", dilations_vec},
                                        {"groups", groups},
                                        {"data_format", data_format}});
634 635 636 637 638 639 640
      runner.Run(stream);
    }

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
      std::vector<int> input_shape_vec = phi::vectorize<int>(input->dims());

641 642 643
      phi::DenseTensor input_grad_tensor =
          ctx.AllocateTmpTensor<T, NPUDeviceContext>(input_grad->dims(),
                                                     dev_ctx);
644 645 646
      input_grad_tensor.ShareDataWith(*input_grad);
      input_grad_tensor.set_layout(DataLayout::kNCDHW);

647 648 649 650 651 652 653 654 655
      const auto& runner = NpuOpRunner("Conv3DBackpropInputD",
                                       {filter_tensor, output_grad_tensor},
                                       {input_grad_tensor},
                                       {{"input_size", input_shape_vec},
                                        {"strides", strides_vec},
                                        {"pads", paddings},
                                        {"dilations", dilations_vec},
                                        {"groups", groups},
                                        {"data_format", data_format}});
656 657 658 659 660
      runner.Run(stream);
    }
  }
};

661 662 663 664
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
665 666
namespace plat = paddle::platform;

667 668
REGISTER_OP_NPU_KERNEL(depthwise_conv2d,
                       ops::DepthwiseConvNPUKernel<float>,
669 670 671 672 673
                       ops::DepthwiseConvNPUKernel<plat::float16>);

REGISTER_OP_NPU_KERNEL(depthwise_conv2d_grad,
                       ops::DepthwiseConvGradNPUKernel<float>,
                       ops::DepthwiseConvGradNPUKernel<plat::float16>);
674

675 676
REGISTER_OP_NPU_KERNEL(conv2d,
                       ops::NPUConvOpKernel<float>,
677 678
                       ops::NPUConvOpKernel<plat::float16>);

679 680
REGISTER_OP_NPU_KERNEL(conv2d_grad,
                       ops::NPUConvGradOpKernel<float>,
681
                       ops::NPUConvGradOpKernel<plat::float16>);
682

683 684
REGISTER_OP_NPU_KERNEL(conv3d,
                       ops::NPUConv3dKernel<float>,
685 686
                       ops::NPUConv3dKernel<plat::float16>);

687 688
REGISTER_OP_NPU_KERNEL(conv3d_grad,
                       ops::NPUConv3dGradKernel<float>,
689
                       ops::NPUConv3dGradKernel<plat::float16>);