pool2d_op.cc 9.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20
namespace paddle {
namespace framework {
class Scope;
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
59 60 61 62 63
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
64 65
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
66
    VLOG(4)
N
nhzlx 已提交
67 68
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
N
nhzlx 已提交
69 70 71 72
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

73 74
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
75
    std::string pool_type =
76
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
77
    std::vector<int> ksize =
78
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
79
    std::vector<int> strides =
80
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
81
    std::vector<int> paddings =
82
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
83 84 85
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
86
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
87 88
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
89
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
90

N
nhzlx 已提交
91
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
92 93
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
94 95
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
96
    if (pool_type == "max") {
N
nhzlx 已提交
97
      nv_pool_type = nvinfer1::PoolingType::kMAX;
98
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
99
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
100
    } else if (pool_type == "avg") {
N
nhzlx 已提交
101
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
102
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
103
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
104 105
    }

N
nhzlx 已提交
106 107 108 109 110 111
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

112 113 114
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
115
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
116 117 118 119
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

120
    if (engine_->with_dynamic_shape()) {
121
      if (!adaptive && !global_pooling && !ceil_mode) {
122 123 124 125
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
126
        pool_layer->setAverageCountExcludesPadding(exclusive);
127
        layer = pool_layer;
128 129 130 131
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
132 133 134 135 136
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
137
        layer = engine_->AddDynamicPlugin(&input1, 1, plugin);
138 139 140 141 142 143 144 145 146 147 148 149
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
150 151 152
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
153
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
N
nhzlx 已提交
154 155
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
156
      PADDLE_ENFORCE_NOT_NULL(
157 158
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
159
      auto output_name = op_desc.Output("Out")[0];
160 161 162 163 164 165 166
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
167
      if (test_mode) {
N
nhzlx 已提交
168
        engine_->DeclareOutput(output_name);
169
      }
N
nhzlx 已提交
170 171
      return;
    }
172

173
    if (!adaptive) {
N
nhzlx 已提交
174 175 176 177
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
178 179
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
180 181 182 183 184 185 186 187
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
188 189 190
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
191 192 193 194 195
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
196 197 198
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
199 200
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
201
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
202 203 204 205 206 207 208 209
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
210
      }
211 212 213 214
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
215 216 217 218
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
219
      layer = pool_layer;
220
    }
N
nhzlx 已提交
221
    auto output_name = op_desc.Output("Out")[0];
222
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
223 224 225 226 227 228 229 230 231
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);