functional_cv2.py 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import sys
18
import math
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
import numbers
import warnings
import collections

import numpy as np
from numpy import sin, cos, tan

import paddle
from paddle.utils import try_import

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

36 37
__all__ = []

38 39 40 41 42 43 44 45

def to_tensor(pic, data_format='CHW'):
    """Converts a ``numpy.ndarray`` to paddle.Tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (np.ndarray): Image to be converted to tensor.
L
LielinJiang 已提交
46
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
47 48 49 50 51 52 53
            'CHW'. Default: 'CHW'.

    Returns:
        Tensor: Converted image.

    """

54
    if data_format not in ['CHW', 'HWC']:
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        raise ValueError('data_format should be CHW or HWC. Got {}'.format(
            data_format))

    if pic.ndim == 2:
        pic = pic[:, :, None]

    if data_format == 'CHW':
        img = paddle.to_tensor(pic.transpose((2, 0, 1)))
    else:
        img = paddle.to_tensor(pic)

    if paddle.fluid.data_feeder.convert_dtype(img.dtype) == 'uint8':
        return paddle.cast(img, np.float32) / 255.
    else:
        return img


def resize(img, size, interpolation='bilinear'):
    """
    Resizes the image to given size

    Args:
        input (np.ndarray): Image to be resized.
        size (int|list|tuple): Target size of input data, with (height, width) shape.
        interpolation (int|str, optional): Interpolation method. when use cv2 backend, 
            support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4

    Returns:
        np.array: Resized image.

    """
    cv2 = try_import('cv2')
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
        'lanczos': cv2.INTER_LANCZOS4
    }

    if not (isinstance(size, int) or
            (isinstance(size, Iterable) and len(size) == 2)):
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    h, w = img.shape[:2]

    if isinstance(size, int):
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            output = cv2.resize(
                img,
                dsize=(ow, oh),
                interpolation=_cv2_interp_from_str[interpolation])
        else:
            oh = size
            ow = int(size * w / h)
            output = cv2.resize(
                img,
                dsize=(ow, oh),
                interpolation=_cv2_interp_from_str[interpolation])
    else:
        output = cv2.resize(
            img,
            dsize=(size[1], size[0]),
            interpolation=_cv2_interp_from_str[interpolation])
    if len(img.shape) == 3 and img.shape[2] == 1:
        return output[:, :, np.newaxis]
    else:
        return output


def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Pads the given numpy.array on all sides with specified padding mode and fill value.

    Args:
        img (np.array): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
141 142
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        np.array: Padded image.

    """
    cv2 = try_import('cv2')
    _cv2_pad_from_str = {
        'constant': cv2.BORDER_CONSTANT,
        'edge': cv2.BORDER_REPLICATE,
        'reflect': cv2.BORDER_REFLECT_101,
        'symmetric': cv2.BORDER_REFLECT
    }

    if not isinstance(padding, (numbers.Number, list, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, list, tuple)):
        raise TypeError('Got inappropriate fill arg')
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')

    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
        raise ValueError(
            "Padding must be an int or a 2, or 4 element tuple, not a " +
            "{} element tuple".format(len(padding)))

    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if isinstance(padding, list):
        padding = tuple(padding)
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    if isinstance(padding, Sequence) and len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    if isinstance(padding, Sequence) and len(padding) == 4:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.copyMakeBorder(
            img,
            top=pad_top,
            bottom=pad_bottom,
            left=pad_left,
            right=pad_right,
            borderType=_cv2_pad_from_str[padding_mode],
            value=fill)[:, :, np.newaxis]
    else:
        return cv2.copyMakeBorder(
            img,
            top=pad_top,
            bottom=pad_bottom,
            left=pad_left,
            right=pad_right,
            borderType=_cv2_pad_from_str[padding_mode],
            value=fill)


def crop(img, top, left, height, width):
    """Crops the given image.

    Args:
        img (np.array): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        np.array: Cropped image.

    """

    return img[top:top + height, left:left + width, :]


def center_crop(img, output_size):
    """Crops the given image and resize it to desired size.

        Args:
            img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
            backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'. 
        
        Returns:
            np.array: Cropped image.

        """

    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))

    h, w = img.shape[0:2]
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)


def hflip(img):
    """Horizontally flips the given image.

    Args:
        img (np.array): Image to be flipped.

    Returns:
        np.array:  Horizontall flipped image.

    """
    cv2 = try_import('cv2')

    return cv2.flip(img, 1)


def vflip(img):
    """Vertically flips the given np.array.

    Args:
        img (np.array): Image to be flipped.

    Returns:
        np.array:  Vertically flipped image.

    """
    cv2 = try_import('cv2')

    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.flip(img, 0)[:, :, np.newaxis]
    else:
        return cv2.flip(img, 0)


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an image.

    Args:
        img (np.array): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        np.array: Brightness adjusted image.

    """
    cv2 = try_import('cv2')

    table = np.array([i * brightness_factor
                      for i in range(0, 256)]).clip(0, 255).astype('uint8')

    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.LUT(img, table)[:, :, np.newaxis]
    else:
        return cv2.LUT(img, table)


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an image.

    Args:
        img (np.array): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        np.array: Contrast adjusted image.

    """
    cv2 = try_import('cv2')

    table = np.array([(i - 74) * contrast_factor + 74
                      for i in range(0, 256)]).clip(0, 255).astype('uint8')
    if len(img.shape) == 3 and img.shape[2] == 1:
        return cv2.LUT(img, table)[:, :, np.newaxis]
    else:
        return cv2.LUT(img, table)


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
        img (np.array): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        np.array: Saturation adjusted image.

    """
    cv2 = try_import('cv2')

    dtype = img.dtype
    img = img.astype(np.float32)
    alpha = np.random.uniform(
        max(0, 1 - saturation_factor), 1 + saturation_factor)
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = gray_img[..., np.newaxis]
    img = img * alpha + gray_img * (1 - alpha)
    return img.clip(0, 255).astype(dtype)


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
        img (np.array): Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        np.array: Hue adjusted image.

    """
    cv2 = try_import('cv2')

    if not (-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))

    dtype = img.dtype
    img = img.astype(np.uint8)
    hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
    h, s, v = cv2.split(hsv_img)

    alpha = np.random.uniform(hue_factor, hue_factor)
    h = h.astype(np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over="ignore"):
        h += np.uint8(alpha * 255)
    hsv_img = cv2.merge([h, s, v])
    return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)


413 414 415 416 417 418
def rotate(img,
           angle,
           interpolation='nearest',
           expand=False,
           center=None,
           fill=0):
419 420 421 422 423
    """Rotates the image by angle.

    Args:
        img (np.array): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
424
        interpolation (int|str, optional): Interpolation method. If omitted, or if the 
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            image has only one channel, it is set to cv2.INTER_NEAREST.
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.

    Returns:
        np.array: Rotated image.

    """
    cv2 = try_import('cv2')
445 446 447 448 449 450 451
    _cv2_interp_from_str = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'area': cv2.INTER_AREA,
        'bicubic': cv2.INTER_CUBIC,
        'lanczos': cv2.INTER_LANCZOS4
    }
452

453
    h, w = img.shape[0:2]
454
    if center is None:
455
        center = (w / 2.0, h / 2.0)
456
    M = cv2.getRotationMatrix2D(center, angle, 1)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    if expand:

        def transform(x, y, matrix):
            (a, b, c, d, e, f) = matrix
            return a * x + b * y + c, d * x + e * y + f

        # calculate output size
        xx = []
        yy = []

        angle = -math.radians(angle)
        expand_matrix = [
            round(math.cos(angle), 15),
            round(math.sin(angle), 15),
            0.0,
            round(-math.sin(angle), 15),
            round(math.cos(angle), 15),
            0.0,
        ]

        post_trans = (0, 0)
        expand_matrix[2], expand_matrix[5] = transform(
            -center[0] - post_trans[0], -center[1] - post_trans[1],
            expand_matrix)
        expand_matrix[2] += center[0]
        expand_matrix[5] += center[1]

        for x, y in ((0, 0), (w, 0), (w, h), (0, h)):
            x, y = transform(x, y, expand_matrix)
            xx.append(x)
            yy.append(y)
        nw = math.ceil(max(xx)) - math.floor(min(xx))
        nh = math.ceil(max(yy)) - math.floor(min(yy))

        M[0, 2] += (nw - w) * 0.5
        M[1, 2] += (nh - h) * 0.5

        w, h = int(nw), int(nh)

497
    if len(img.shape) == 3 and img.shape[2] == 1:
498 499 500 501 502
        return cv2.warpAffine(
            img,
            M, (w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill)[:, :, np.newaxis]
503
    else:
504 505 506 507 508
        return cv2.warpAffine(
            img,
            M, (w, h),
            flags=_cv2_interp_from_str[interpolation],
            borderValue=fill)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561


def to_grayscale(img, num_output_channels=1):
    """Converts image to grayscale version of image.

    Args:
        img (np.array): Image to be converted to grayscale.

    Returns:
        np.array: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b

    """
    cv2 = try_import('cv2')

    if num_output_channels == 1:
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
    elif num_output_channels == 3:
        # much faster than doing cvtColor to go back to gray
        img = np.broadcast_to(
            cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis], img.shape)
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img


def normalize(img, mean, std, data_format='CHW', to_rgb=False):
    """Normalizes a ndarray imge or image with mean and standard deviation.

    Args:
        img (np.array): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.

    Returns:
        np.array: Normalized mage.

    """

    if data_format == 'CHW':
        mean = np.float32(np.array(mean).reshape(-1, 1, 1))
        std = np.float32(np.array(std).reshape(-1, 1, 1))
    else:
        mean = np.float32(np.array(mean).reshape(1, 1, -1))
        std = np.float32(np.array(std).reshape(1, 1, -1))
    if to_rgb:
        # inplace
562
        img = img[..., ::-1]
563 564 565

    img = (img - mean) / std
    return img