expand_op.h 6.3 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   You may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

#define EXPAND_TEMPLATE(z, n, data) \
  case n + 1: {                     \
    Expand<n + 1>(context);         \
    break;                          \
  }
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)

#define COND(n) BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, 6), BOOST_PP_MOD(n, 6))
#define EXPAND_GRAD_CASE(n)                                        \
  case n: {                                                        \
    ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                         \
  }
#define EXPAND_TEMPLATE_GRAD(z, n, data) \
  BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE_GRAD, ~)

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename Place, typename T>
class ExpandKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto rank = framework::arity(context.Input<Tensor>("X")->dims());
    switch (rank) {
      REP_EXPAND_TEMPLATE(6)
      default:
        PADDLE_ENFORCE(false, "Only support tensor whose rank in [1, 6].");
    };
  }

 protected:
  template <int Rank>
  void Expand(const framework::ExecutionContext& context) const {
    auto* in0 = context.Input<Tensor>("X");
    auto expand_times = context.Attr<std::vector<int>>("expandTimes");
    auto* out0 = context.Output<Tensor>("Out");
    Eigen::DSizes<int, Rank> bcast_dims;
    auto x_dims = in0->dims();
    for (size_t i = 0; i < expand_times.size(); ++i) {
      bcast_dims[i] = expand_times[i];
    }
    auto x = EigenTensor<T, Rank>::From(*in0);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0);
    auto place = context.GetEigenDevice<Place>();
    y.device(place) = x.broadcast(bcast_dims);
  }
};

template <typename Place, typename T>
class ExpandGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto expand_times = context.Attr<std::vector<int>>("expandTimes");
    auto x_dims = in0->dims();
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      if (expand_times[i] == 1) {
        reshape_dims_vec.push_back(x_dims[i]);
      } else {
        if (x_dims[i] == 1) {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
        } else {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
          reshape_dims_vec.push_back(x_dims[i]);
        }
      }
    }

    int dims = reshape_dims_vec.size() * 6 + reduce_dims_vec.size() - 7;
Y
yangyaming 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    // no need reduce, just copy
    if (reduce_dims_vec.size() == 0) {
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
      out0->mutable_data<T>(context.GetPlace());
      if (platform::is_cpu_place(context.GetPlace())) {
        out0->CopyFrom<T>(*in0, platform::CPUPlace());
      } else {
        out0->CopyFrom<T>(*in0, platform::GPUPlace());
      }
    } else {
      switch (dims) {
        REP_EXPAND_GRAD_TEMPLATE(72)
        default:
          PADDLE_ENFORCE(false, "Only support tensor whose rank in [1, 6].");
      };
    }
Y
yangyaming 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  }

 protected:
  template <int Dims>
  void ExpandBackward(const framework::ExecutionContext& context,
                      const std::vector<int>& reshape_dims_vec,
                      const std::vector<int>& reduce_dims_vec) const {
    size_t reshape_size = Dims / 6 + 1;
    size_t reduce_size = Dims % 6 + 1;
    PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
                      "Inconsistent size between Dims and "
                      "reshape dimensions.");
    PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
                      "Inconsistent size between Dims and "
                      "reduce dimensions.");
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    auto x = EigenVector<T>::Flatten(*(context.Input<Tensor>("X")));
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
    Eigen::DSizes<int, Dims / 6 + 1> reshape_dims;
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
    Eigen::DSizes<int, Dims % 6 + 1> reduce_dims;
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
    x_grad.device(context.GetEigenDevice<Place>()) =
        out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions());
  }
};

}  // operators
}  // paddle