mul_compute.cc 5.4 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

using Tensor = framework::Tensor;

template <typename T>
class MulCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::MulParam;

  void Run() override {
33
    auto& context = ctx_->As<X86Context>();
L
liuwei1031 已提交
34
    auto& param = *param_.get_mutable<operators::MulParam>();
35
    CHECK(context.x86_device_context());
L
liuwei1031 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

    param.output->template mutable_data<T>();

    auto* x = &param.x->raw_tensor();
    auto* y = &param.y->raw_tensor();

    const Tensor x_matrix = x->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                       *x, param.x_num_col_dims)
                                                 : *x;
    const Tensor y_matrix = y->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                       *y, param.y_num_col_dims)
                                                 : *y;

    auto* z = &param.output->raw_tensor();
    auto z_dim = z->dims();
    if (z_dim.size() != 2) {
      z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    auto blas = paddle::operators::math::GetBlas<platform::CPUDeviceContext, T>(
56
        *context.x86_device_context());
L
liuwei1031 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70

    blas.MatMul(x_matrix, y_matrix, z);
    if (z_dim.size() != 2) {
      z->Resize(z_dim);
    }
  }

  virtual ~MulCompute() = default;
};

template <typename T>
class MulGradCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  void Run() override {
71
    auto& context = ctx_->As<X86Context>();
L
liuwei1031 已提交
72
    auto& param = *param_.get_mutable<operators::MulGradParam>();
73
    CHECK(context.x86_device_context());
L
liuwei1031 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    auto* x = &param.x->raw_tensor();
    auto* y = &param.y->raw_tensor();
    auto x_matrix = x->dims().size() > 2
                        ? framework::ReshapeToMatrix(*x, param.x_num_col_dims)
                        : static_cast<const Tensor&>(*x);
    auto y_matrix = y->dims().size() > 2
                        ? framework::ReshapeToMatrix(*y, param.y_num_col_dims)
                        : static_cast<const Tensor&>(*y);
    auto* dout = &param.output_grad->raw_tensor();

    Tensor dout_mat;
    dout_mat.ShareDataWith(*dout);
    dout_mat.Resize(
        {framework::flatten_to_2d(x->dims(), param.x_num_col_dims)[0],
         framework::flatten_to_2d(y->dims(), param.y_num_col_dims)[1]});

    auto* dx = &param.x_grad->raw_tensor();
    auto* dy = &param.y_grad->raw_tensor();

    if (dx != nullptr) {
      dx->set_lod(x->lod());
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
    }

    auto blas = paddle::operators::math::GetBlas<platform::CPUDeviceContext, T>(
102
        *context.x86_device_context());
L
liuwei1031 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (dx) {
      // dx->mutable_data<T>(context.x86_device_context->GetPlace());
      param.x_grad->template mutable_data<T>();
      Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                     *dx, param.x_num_col_dims)
                                               : *dx;

      // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
      blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
    }
    if (dy) {
      // dy->yutable_data<T>(context.x86_device_context->GetPlace());
      param.y_grad->template mutable_data<T>();
      Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                     *dy, param.y_num_col_dims)
                                               : *dy;
      // dy = x' * dout. dy K x N, dout : M x N, x : M x K
      blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
    }
  }

  virtual ~MulGradCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(mul, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::MulCompute<float>, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();

REGISTER_LITE_KERNEL(mul_grad, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::MulGradCompute<float>, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput(paddle::framework::GradVarName("Out"),
               {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput(paddle::framework::GradVarName("X"),
                {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput(paddle::framework::GradVarName("Y"),
                {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();