context.cc 9.6 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
Superjomn 已提交
15
#include "paddle/fluid/lite/core/context.h"
T
tensor-tang 已提交
16 17
#include "paddle/fluid/lite/core/cpu_info.h"

18
#ifdef LITE_WITH_LINUX
T
tensor-tang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include <sys/syscall.h>
#include <unistd.h>
#endif
#if __APPLE__
#include "TargetConditionals.h"
#if TARGET_OS_IPHONE
#include <mach/machine.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#endif  // TARGET_OS_IPHONE
#endif  // __APPLE__

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM

36
void Context<TargetType::kARM>::SetCache(int l1size, int l2size, int l3size) {
T
tensor-tang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49
  DeviceInfo& dev = DeviceInfo::Global();
  int cpu_count = arm_get_cpucount();
  dev.L1_cache_.resize(cpu_count);
  dev.L2_cache_.resize(cpu_count);
  dev.L3_cache_.resize(cpu_count);
  for (int i = 0; i < cpu_count; ++i) {
    dev.L1_cache_[i] = l1size;
    dev.L2_cache_[i] = l2size;
    dev.L3_cache_[i] = l3size;
  }
  workspace_.Resize({2 * (l1size + l2size)});
}

50
Context<TargetType::kARM>::Context() {
T
tensor-tang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64
  active_ids_ = {0};
  mode_ = LITE_POWER_HIGH;
  DeviceInfo& dev = DeviceInfo::Global();
  workspace_.Resize(
      {static_cast<int64_t>(dev.L2_cache_[active_ids_[0]] / sizeof(float))});
#ifdef TARGET_IOS
  arch_ = APPLE;  // use 6x8
#else
  if (dev.big_core_ids_.size() > 0) {
    arch_ = dev.archs_[dev.big_core_ids_[0]];
  }
#endif
}

65
PowerMode Context<TargetType::kARM>::mode() const { return mode_; }
T
tensor-tang 已提交
66

67
int Context<TargetType::kARM>::threads() const { return active_ids_.size(); }
T
tensor-tang 已提交
68

69
Context<TargetType::kARM>::Context(const ARMContext& ctx) {
T
tensor-tang 已提交
70 71 72 73 74 75 76
  mode_ = ctx.mode_;
  active_ids_ = ctx.active_ids_;
  workspace_ = ctx.workspace_;
  arch_ = ctx.arch_;
  count_ = ctx.count_;
}

77
ARMContext& Context<TargetType::kARM>::operator=(const ARMContext& ctx) {
T
tensor-tang 已提交
78 79 80 81 82 83 84 85
  mode_ = ctx.mode_;
  active_ids_ = ctx.active_ids_;
  workspace_ = ctx.workspace_;
  arch_ = ctx.arch_;
  count_ = ctx.count_;
  return *this;
}

86
void Context<TargetType::kARM>::BindDev() {
T
tensor-tang 已提交
87 88 89
#ifdef USE_OPENMP
  int num_threads = active_ids_.size();
  omp_set_num_threads(num_threads);
90
#ifdef LITE_WITH_LINUX
T
tensor-tang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104
  std::vector<int> ssarets;
  for (int j = 0; j < num_threads; ++j) {
    ssarets.push_back(0);
  }
#pragma omp parallel for
  for (int i = 0; i < num_threads; i++) {
    ssarets[i] = set_sched_affinity(active_ids_);
  }
  for (int i = 0; i < num_threads; i++) {
    if (ssarets[i] != 0) {
      LOGE("set cpu affinity failed, cpuID: %d\n", active_ids_[i]);
      return;
    }
  }
105
#endif  // LITE_WITH_LINUX
T
tensor-tang 已提交
106
#else   // USE_OPENMP
107
#ifdef LITE_WITH_LINUX
T
tensor-tang 已提交
108 109 110 111 112 113 114
  std::vector<int> cpuid1;
  cpuid1.push_back(active_ids_[0]);
  int ssaret = set_sched_affinity(cpuid1);
  if (ssaret != 0) {
    printf("set cpu affinity failed, cpuID: %d\n", active_ids_[0]);
    return;
  }
115
#endif  // LITE_WITH_LINUX
T
tensor-tang 已提交
116 117 118
#endif  // USE_OPENMP
}

119
void Context<TargetType::kARM>::SetRunMode(PowerMode mode, int threads) {
T
tensor-tang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  DeviceInfo& dev = DeviceInfo::Global();
  int big_core_size = dev.big_core_ids_.size();
  int small_core_size = dev.little_core_ids_.size();
  if (threads > big_core_size + small_core_size) {
    threads = big_core_size + small_core_size;
  }
#ifdef USE_OPENMP
  count_++;
  int shift_num = (count_ / 10) % big_core_size;
  switch (mode) {
    case LITE_POWER_FULL:
      mode_ = mode;
      active_ids_.clear();
      for (int i = 0; i < threads; ++i) {
        if (i < big_core_size) {
          active_ids_.push_back(dev.big_core_ids_[i]);
        } else {
          active_ids_.push_back(dev.little_core_ids_[i - big_core_size]);
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_HIGH:
      active_ids_.clear();
      if (big_core_size > 0) {
        mode_ = LITE_POWER_HIGH;
        if (threads > big_core_size) {
          LOGE("threads: %d, exceed the big cores size: %d\n", threads,
               big_core_size);
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      } else {
        mode_ = LITE_POWER_LOW;
        LOGE("HIGH POWER MODE is not support, switch to little cores\n");
        if (threads > small_core_size) {
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_LOW:
      active_ids_.clear();
      if (small_core_size > 0) {
        mode_ = LITE_POWER_LOW;
        if (threads > small_core_size) {
          LOGW("threads: %d, exceed the little cores size: %d\n", threads,
               small_core_size);
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      } else {
        mode_ = LITE_POWER_HIGH;
        LOGW("LOW POWER MODE is not support, switch to big cores\n");
        if (threads > big_core_size) {
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_NO_BIND:
      mode_ = LITE_POWER_NO_BIND;
      active_ids_.clear();
      if (threads > dev.core_ids_.size()) {
        active_ids_.resize(dev.core_ids_.size());
      } else {
        active_ids_.resize(threads);
      }
      break;
    case LITE_POWER_RAND_HIGH:
      active_ids_.clear();
      if (big_core_size > 0) {
        mode_ = LITE_POWER_RAND_HIGH;
        if (threads > big_core_size) {
          LOGW("threads: %d, exceed the big cores size: %d\n", threads,
               big_core_size);
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(
                dev.big_core_ids_[(i + shift_num) % big_core_size]);
          }
        }
      } else {
        mode_ = LITE_POWER_LOW;
        LOGW("HIGH POWER MODE is not support, switch to little cores\n");
        if (threads > small_core_size) {
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_RAND_LOW:
      active_ids_.clear();
      if (small_core_size > 0) {
        mode_ = LITE_POWER_RAND_LOW;
        if (threads > small_core_size) {
          LOGW("threads: %d, exceed the little cores size: %d\n", threads,
               small_core_size);
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(
                dev.little_core_ids_[(i + shift_num) % small_core_size]);
          }
        }
      } else {
        mode_ = LITE_POWER_HIGH;
        LOGW("LOW POWER MODE is not support, switch to big cores\n");
        if (threads > big_core_size) {
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
  }
  //! fix multi-threads LITE_POWER_HIGH mode
  if (mode_ == LITE_POWER_NO_BIND || threads > 1) {
    int threads = active_ids_.size();
    omp_set_num_threads(threads);
  } else {
    if (check_online(active_ids_)) {
      BindDev();
    } else {
      LOG(ERROR) << "core id " << active_ids_[0]
                 << " is offline, switch to NO BIND MODE";
      int threads = active_ids_.size();
      omp_set_num_threads(threads);
    }
  }
#else
  if (big_core_size > 0) {
    active_ids_ = {dev.big_core_ids_[0]};
  } else {
    active_ids_ = {0};
  }
#endif
  //! alloc memory for sgemm in this context
  int temp_mem_size =
      DeviceInfo::Global().L2_cache_[active_ids_[0]] / sizeof(float);
  workspace_.Resize({temp_mem_size});
  arch_ = DeviceInfo::Global().archs_[active_ids_[0]];
}

296
ARMArch Context<TargetType::kARM>::arch() const { return arch_; }
T
tensor-tang 已提交
297

298
void Context<TargetType::kARM>::SetArch(ARMArch arch) { arch_ = arch; }
T
tensor-tang 已提交
299

300
int Context<TargetType::kARM>::l1_cache_size() const {
T
tensor-tang 已提交
301 302 303 304
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L1_cache_[active_ids_[0]];
}

305
int Context<TargetType::kARM>::l2_cache_size() const {
T
tensor-tang 已提交
306 307 308 309
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L2_cache_[active_ids_[0]];
}

310
int Context<TargetType::kARM>::l3_cache_size() const {
T
tensor-tang 已提交
311 312 313 314
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L3_cache_[active_ids_[0]];
}

315
bool Context<TargetType::kARM>::ExtendWorkspace(DDimLite dims) {
T
tensor-tang 已提交
316 317 318 319 320 321 322 323 324 325 326
  auto count = dims.product();
  auto old = workspace_.dims();
  if (count == old.product()) {
    return false;
  }

  workspace_.Resize(
      {static_cast<int64_t>(count + l2_cache_size() / sizeof(float))});
  return true;
}
#endif  // LITE_WITH_ARM
327

T
tensor-tang 已提交
328 329
}  // namespace lite
}  // namespace paddle