sparse_mask_kernel.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
22
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

#include "paddle/phi/api/ext/dispatch.h"

namespace phi {
namespace sparse {

template <typename T, typename IntT>
void SparseMaskCPUKernel(const CPUContext& dev_ctx,
                         const DenseTensor& x,
                         const SparseCooTensor& mask,
                         SparseCooTensor* out) {
  const DDim& dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x.dims(),
      mask.dims(),
      phi::errors::InvalidArgument("the input x and mask must have the shape"));
  const DenseTensor& indices = mask.non_zero_indices();
  const DenseTensor& values = mask.non_zero_elements();
  int sparse_dim = indices.dims().size();

  DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices);
  DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values);

  // the out_indices is same as indices of mask
  phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices);

  T* out_values_ptr = out_values.data<T>();
  const T* x_ptr = x.data<T>();

  const int64_t non_zero_num = mask.nnz();
  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int cols = dims_2d[1];
55 56 57 58 59 60
  const IntT* indices_ptr = indices.data<IntT>();

  std::vector<IntT> out_indexs(non_zero_num), sparse_offsets(sparse_dim);

  phi::funcs::sparse::CalcOffsetsPerDim<IntT>(
      dims, sparse_dim, &sparse_offsets);
61 62

  for (int64_t i = 0; i < non_zero_num; i++) {
63 64
    int64_t index = phi::funcs::sparse::IndicesToIndex<IntT>(
        indices_ptr, sparse_offsets.data(), non_zero_num, sparse_dim, i);
65 66
    memcpy(out_values_ptr + i * cols, x_ptr + index * cols, cols * sizeof(T));
  }
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  out->SetMember(out_indices, out_values, dims, true);
}

/**
 * @brief Filter the DenseTensor x by the
 * mask.non_zero_indices() and output a SparseCooTensor
 * x and mask must have the same shape.
**/
template <typename T, typename Context>
void SparseMaskKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const SparseCooTensor& mask,
                      SparseCooTensor* out) {
  PD_DISPATCH_INTEGRAL_TYPES(
      mask.non_zero_indices().dtype(), "SparseMaskCPUKernel", ([&] {
        SparseMaskCPUKernel<T, data_t>(dev_ctx, x, mask, out);
      }));
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
template <typename T, typename IntT>
void SparseMaskHelperCPUKernel(const CPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               const DenseTensor& mask_indices,
                               DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
      mask_indices.dims().size(),
      2,
      phi::errors::InvalidArgument("the mask_indices must be 2-D tensor"));

  const int64_t sparse_dim = x.non_zero_indices().dims()[0];

  std::vector<IntT> sparse_offsets(sparse_dim), x_indexs(x.nnz()),
      mask_indexs(mask_indices.dims()[1]);
  phi::funcs::sparse::CalcOffsetsPerDim<IntT>(
      x.dims(), sparse_dim, &sparse_offsets);

  phi::funcs::sparse::FlattenIndices(x.non_zero_indices().data<IntT>(),
                                     sparse_offsets.data(),
                                     x.nnz(),
                                     sparse_dim,
                                     0,
                                     1,
                                     x_indexs.data());
  phi::funcs::sparse::FlattenIndices(mask_indices.data<IntT>(),
                                     sparse_offsets.data(),
                                     x.nnz(),
                                     sparse_dim,
                                     0,
                                     1,
                                     mask_indexs.data());

  std::unordered_map<IntT, uint64_t> x_indexs_map;
  for (uint64_t i = 0; i < x_indexs.size(); i++) {
    x_indexs_map[x_indexs[i]] = i;
  }
  *out = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* out_ptr = out->data<T>();
  memset(out_ptr, static_cast<T>(0), out->numel() * sizeof(T));
  const int64_t stride =
      x.dims().size() == sparse_dim ? 1 : x.dims().size() - sparse_dim;
  const T* in_ptr = x.non_zero_elements().data<T>();
  // TODO(zhangkaihuo): multithreading can be used for acceleration
  for (uint64_t i = 0; i < mask_indexs.size(); i++) {
    auto iter = x_indexs_map.find(mask_indexs[i]);
    if (iter != x_indexs_map.end()) {
      memcpy(out_ptr + i * stride,
             in_ptr + iter->second * stride,
             stride * sizeof(T));
    }
  }
}

/**
 * @brief filter values from x.values() using mask_indices
 */
template <typename T, typename Context>
void SparseMaskHelperKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& mask_indices,
                            DenseTensor* out) {
  PD_DISPATCH_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseMaskHelperCPUKernel", ([&] {
        SparseMaskHelperCPUKernel<T, data_t>(dev_ctx, x, mask_indices, out);
      }));
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sparse_mask,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseMaskKernel,
                   float,
                   double,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
170 171 172 173 174 175 176 177 178 179 180 181 182

PD_REGISTER_KERNEL(sparse_mask_helper,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseMaskHelperKernel,
                   float,
                   double,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}