You need to sign in or sign up before continuing.
test_dist_transpiler.py 22.9 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import paddle.fluid as fluid
Y
Yancey 已提交
17
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
W
Wu Yi 已提交
18
import traceback
19

Y
Yancey 已提交
20

W
Wu Yi 已提交
21
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
22
    def setUp(self):
W
Wu Yi 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)
        return

    def get_main_program(self):
        main = fluid.Program()
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

Q
qiaolongfei 已提交
54 55
    def get_trainer(self, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
56 57
        return t.get_trainer_program()

Q
qiaolongfei 已提交
58 59
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
60 61 62 63
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
64
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
65 66
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
67
            self.transpiler = fluid.DistributeTranspiler(config=config)
W
Wu Yi 已提交
68 69 70 71
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
Q
qiaolongfei 已提交
72 73
                trainers=self.trainers,
                sync_mode=sync_mode)
G
gongweibao 已提交
74

W
Wu Yi 已提交
75
        return self.transpiler
Y
Yancey 已提交
76

Q
qiaolongfei 已提交
77 78
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
79

Y
Yancey 已提交
80
    def test_transpiler(self):
Q
qiaolongfei 已提交
81 82 83 84 85 86 87 88
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            self.transpiler_test_impl()


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
89 90 91
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

Y
Yancey 已提交
92
        trainer = self.get_trainer()
W
Wu Yi 已提交
93 94 95 96 97 98 99

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
100 101 102 103 104

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
105
        # block1~2: optimize pass
Y
Yancey 已提交
106 107 108
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
109 110
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
111
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
112 113
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
135
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
136
    def transpiler_test_impl(self):
G
gongweibao 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

        trainer = self.get_trainer(config)

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
161
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
        self.assertEqual(fc_w_var.shape, (1000L, 1000L))
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
186 187 188 189
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
190
    def transpiler_test_impl(self):
G
gongweibao 已提交
191 192 193 194 195
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
196 197 198 199 200 201 202

        if startup.global_block().vars.has_key("fc_w"):
            fc_w_var = startup.global_block().vars["fc_w"]
        elif startup2.global_block().vars.has_key("fc_w"):
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
203 204


W
Wu Yi 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
225
    def transpiler_test_impl(self):
W
Wu Yi 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
255
    def transpiler_test_impl(self):
W
Wu Yi 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
        for b in serv_op.attrs["optimize_blocks"]:
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(
                name='fc_w',
                regularizer=fluid.regularizer.L2Decay(),
                gradient_clip=fluid.clip.GradientClipByValue(0.1)),
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
304
    def transpiler_test_impl(self):
W
Wu Yi 已提交
305 306 307 308 309 310 311 312 313 314 315
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "elementwise_add", "sgd"])
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
316

T
typhoonzero 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)
        return

Q
qiaolongfei 已提交
339
    def transpiler_test_impl(self):
T
typhoonzero 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer = self.get_trainer()

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "elementwise_add", "momentum"])
Y
Yancey 已提交
361 362


363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
class TestDistLookupTableBase(TranspilerTest):
    def network_with_table(self, is_sparse, is_distributed):
        def emb_pool(ids):
            table_size = 1000
            emb_size = 64
            emb = fluid.layers.embedding(
                input=ids,
                size=[table_size, emb_size],
                dtype='float32',
                param_attr='shared_w',  # share parameter
                is_sparse=is_sparse,
                is_distributed=is_distributed)
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1)
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
        title_emb = emb_pool(title_ids)
        brand_emb = emb_pool(brand_ids)
        fc0 = fluid.layers.concat(input=[title_emb, brand_emb], axis=1)
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "adam", "scale", "scale"])

        trainer = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send',
            'send_barrier', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 6)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
        # 4 prefetch -> lookup_sparse_table for data1
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids',
            'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_ids', 'send', 'send_barrier', 'recv', 'recv',
            'fetch_barrier'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
468 469 470 471 472 473
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
474
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

        self.assertEqual(len(pserver1.blocks), 3)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])

        trainer = self.get_trainer(config)
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
            'fill_constant', 'mean_grad', 'cross_entropy_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_selected_rows', 'send', 'recv',
            'recv', 'recv', 'concat'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
500 501 502 503 504 505 506
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
507
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

        self.assertEqual(len(pserver1.blocks), 6)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["lookup_sparse_table"])
        # 4 prefetch -> lookup_sparse_table for data1
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer = self.get_trainer(config)
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids',
            'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_ids', 'send', 'recv', 'recv'
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Y
Yancey 已提交
539 540
if __name__ == "__main__":
    unittest.main()