iterable_dataset.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
import tempfile
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import paddle.distributed.auto_parallel as auto
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.fluid.dataloader.collate import default_collate_fn

paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 2
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)


50
class MyDataset(paddle.io.IterableDataset):
51 52 53 54 55 56 57 58 59 60 61

    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __iter__(self):
        for i in range(self.num_samples):
            input = np.random.uniform(size=image_size).astype("float32")
            label = np.random.randint(0, class_num - 1, dtype="int64")
            yield input, label


62
class MyDataset1(paddle.io.Dataset):
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def __init__(self, num_samples):
        self.num_samples = num_samples
        self.data = []
        for i in range(self.num_samples):
            input1 = np.random.uniform(size=image_size).astype("float32")
            label1 = np.array(np.random.randint(0, class_num - 1,
                                                dtype="int64"))
            input2 = np.random.uniform(size=image_size).astype("float32")
            label2 = np.array(np.random.randint(0, class_num - 1,
                                                dtype="int64"))
            input = np.stack((input1, input2))
            label = np.stack((label1, label2))
            self.data.append((input, label))

    def __getitem__(self, idx):
        return self.data[idx]

    def __len__(self):
        return len(self.data)


class MLPLayer(nn.Layer):

    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
112
        out = auto.shard_op(self.norm, PP_MESH_0)(input)
113 114
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
115
        out = auto.shard_op(self.linear1, PP_MESH_1)(out)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        out = self.dropout(out)
        out = self.linear2(out)
        self.out = out
        return out


def train(fetch):
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
    loss = paddle.nn.CrossEntropyLoss()
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)

134 135
    dist_strategy = auto.Strategy()
    dist_strategy.auto_mode = "semi"
136 137 138
    dist_strategy.split_data = True

    # init engine
139 140 141 142 143
    engine = auto.Engine(mlp,
                         loss,
                         optimizer,
                         paddle.metric.Accuracy(),
                         strategy=dist_strategy)
144 145 146

    # train
    train_dataset = MyDataset(batch_num * batch_size)
147 148 149 150
    engine.fit(train_dataset, epochs=2, batch_size=batch_size)

    train_dataset1 = MyDataset1(batch_size * batch_num)
    engine.fit(train_dataset1, epochs=2, batch_size=None)
151 152 153

    # eval
    eval_dataset = MyDataset(batch_size)
154
    engine.evaluate(eval_dataset, batch_size=batch_size)
155 156 157

    # predict
    test_dataset = MyDataset(batch_size)
158
    engine.predict(test_dataset, batch_size=batch_size)
159 160 161 162

    # save
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp_inf')
163
    engine.save(model_filename, training=False)
164 165 166 167 168
    temp_dir.cleanup()


if __name__ == "__main__":
    train(fetch=True)