prior_box_op.cu 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
15
#include "paddle/fluid/operators/detection/prior_box_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

namespace paddle {
namespace operators {

template <typename T>
__device__ inline T clip(T in) {
  return min(max(in, 0.), 1.);
}

template <typename T>
__global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height,
                            const int width, const int im_height,
                            const int im_width, const int as_num,
                            const T offset, const T step_width,
                            const T step_height, const T* min_sizes,
                            const T* max_sizes, const int min_num,
                            bool is_clip) {
  int num_priors = max_sizes ? as_num * min_num + min_num : as_num * min_num;
  int box_num = height * width * num_priors;
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < box_num;
       i += blockDim.x * gridDim.x) {
    int h = i / (num_priors * width);
    int w = (i / num_priors) % width;
    int p = i % num_priors;
    int m = max_sizes ? p / (as_num + 1) : p / as_num;
    T cx = (w + offset) * step_width;
    T cy = (h + offset) * step_height;
    T bw, bh;
    T min_size = min_sizes[m];
    if (max_sizes) {
      int s = p % (as_num + 1);
      if (s < as_num) {
        T ar = aspect_ratios[s];
        bw = min_size * sqrt(ar) / 2.;
        bh = min_size / sqrt(ar) / 2.;
      } else {
        T max_size = max_sizes[m];
        bw = sqrt(min_size * max_size) / 2.;
        bh = bw;
      }
    } else {
      int s = p % as_num;
      T ar = aspect_ratios[s];
      bw = min_size * sqrt(ar) / 2.;
      bh = min_size / sqrt(ar) / 2.;
    }
    T xmin = (cx - bw) / im_width;
    T ymin = (cy - bh) / im_height;
    T xmax = (cx + bw) / im_width;
    T ymax = (cy + bh) / im_height;
    out[i * 4] = is_clip ? clip<T>(xmin) : xmin;
    out[i * 4 + 1] = is_clip ? clip<T>(ymin) : ymin;
    out[i * 4 + 2] = is_clip ? clip<T>(xmax) : xmax;
    out[i * 4 + 3] = is_clip ? clip<T>(ymax) : ymax;
  }
}

template <typename T>
__global__ void SetVariance(T* out, const T* var, const int vnum,
                            const int num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
       i += blockDim.x * gridDim.x) {
    out[i] = var[i % vnum];
  }
}

template <typename T>
class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");

    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");

    std::vector<float> aspect_ratios;
99
    ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
    T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
    T offset = static_cast<T>(ctx.Attr<float>("offset"));

    auto im_width = image->dims()[3];
    auto im_height = image->dims()[2];

    auto width = input->dims()[3];
    auto height = input->dims()[2];

    T step_width, step_height;
    if (step_w == 0 || step_h == 0) {
      step_width = static_cast<T>(im_width) / width;
      step_height = static_cast<T>(im_height) / height;
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }
    int min_num = static_cast<int>(min_sizes.size());
    int box_num = width * height * num_priors;

    int block = 512;
    int grid = (box_num + block - 1) / block;

    auto stream =
        ctx.template device_context<platform::CUDADeviceContext>().stream();

    boxes->mutable_data<T>(ctx.GetPlace());
    vars->mutable_data<T>(ctx.GetPlace());

    framework::Tensor r;
    framework::TensorFromVector(aspect_ratios, ctx.device_context(), &r);

    framework::Tensor min;
    framework::TensorFromVector(min_sizes, ctx.device_context(), &min);

    T* max_data = nullptr;
    framework::Tensor max;
    if (max_sizes.size() > 0) {
      framework::TensorFromVector(max_sizes, ctx.device_context(), &max);
      max_data = max.data<T>();
    }

    GenPriorBox<T><<<grid, block, 0, stream>>>(
        boxes->data<T>(), r.data<T>(), height, width, im_height, im_width,
        aspect_ratios.size(), offset, step_width, step_height, min.data<T>(),
        max_data, min_num, clip);

    framework::Tensor v;
    framework::TensorFromVector(variances, ctx.device_context(), &v);
    grid = (box_num * 4 + block - 1) / block;
    SetVariance<T><<<grid, block, 0, stream>>>(vars->data<T>(), v.data<T>(),
                                               variances.size(), box_num * 4);
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(prior_box, ops::PriorBoxOpCUDAKernel<float>,
                        ops::PriorBoxOpCUDAKernel<double>);