kernel_factory.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/core/enforce.h"
19 20 21 22
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
#include "paddle/phi/core/compat/convert_utils.h"
#endif
23
#include "paddle/phi/core/compat/op_utils.h"
24

25 26
DECLARE_bool(enable_api_kernel_fallback);

27
namespace phi {
28

29 30
const static Kernel empty_kernel;  // NOLINT

31 32 33 34 35 36 37 38 39
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
40
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
41 42 43 44 45 46 47 48
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

49 50 51 52 53 54 55 56 57 58 59
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

60 61
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
62 63
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
64
    return empty_kernel;
65 66
  }
  auto kernel_iter = iter->second.find(kernel_key);
67 68 69 70 71 72 73
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }

74
  if (kernel_iter == iter->second.end()) {
75
    return empty_kernel;
76
  }
77

78 79 80
  return kernel_iter->second;
}

81 82
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
83 84
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
85
    return KernelKeyMap();
86 87 88 89
  }
  return iter->second;
}

90 91
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
92 93 94 95 96 97 98 99 100 101 102 103 104
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

105
KernelResult KernelFactory::SelectKernelOrThrowError(
Z
zyfncg 已提交
106 107
    const std::string& kernel_name,
    const KernelKey& kernel_key,
108
    bool use_gpudnn) const {
109
  auto iter = kernels_.find(kernel_name);
110 111 112 113
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
114

Z
zyfncg 已提交
115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
116
  if (use_gpudnn && kernel_key.backend() == Backend::GPU) {
Z
zyfncg 已提交
117 118 119 120 121 122 123 124
    auto kernel_iter = iter->second.find(
        {Backend::GPUDNN, kernel_key.layout(), kernel_key.dtype()});
    if (kernel_iter == iter->second.end() &&
        kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
      kernel_iter = iter->second.find(
          {Backend::GPUDNN, DataLayout::ALL_LAYOUT, kernel_key.dtype()});
    }
    if (kernel_iter != iter->second.end()) {
125
      return {kernel_iter->second, false};
Z
zyfncg 已提交
126 127 128 129 130
    }
    LOG(WARNING) << "The cudnn kernel for [" << kernel_name
                 << "] is not registered.";
  }
#endif
131 132
  auto kernel_iter = iter->second.find(kernel_key);
  // TODO(chenweihang): polish refind impl here
133
  if (kernel_iter == iter->second.end() &&
134 135 136
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
137 138
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
139

140 141 142 143 144 145 146 147
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
          "The kernel with key %s of kernel `%s` is not registered.",
          kernel_key,
          kernel_name));

148
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
149 150 151 152 153
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
      paddle::platform::is_in_xpu_black_list(TransToFluidOpName(kernel_name))
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
154 155
#endif
  ) {
156 157 158 159 160 161 162 163 164 165
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
    if (kernel_iter == iter->second.end() &&
        kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
      phi::KernelKey any_layout_kernel_key(
          phi::Backend::CPU, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
      kernel_iter = iter->second.find(any_layout_kernel_key);
    }
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
            "The kernel with key %s of kernel `%s` is not registered and"
            " fail to fallback to CPU one.",
            kernel_key,
            kernel_name));

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

    return {kernel_iter->second, true};
181 182
  }

183 184 185
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
186
      phi::errors::NotFound(
187 188 189 190
          "The kernel with key %s of kernel `%s` is not registered and"
          " the current value of FLAGS_enable_api_kernel_fallback(bool,"
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
191 192 193
          kernel_key,
          kernel_name));

194
  return {kernel_iter->second, false};
195 196
}

197 198 199 200 201 202 203 204 205 206
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

269 270 271 272 273 274 275
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
276
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
277 278 279
  // input
  os << "{\"input\":[";
  bool need_comma = false;
280
  for (auto& in_def : kernel.args_def().input_defs()) {
281 282 283 284
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
285
  }
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
304
    os << "\"" << arg_def.type_index << "\"";
305 306 307 308
    need_comma = true;
  }
  os << "]}";

309 310 311
  return os;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
327
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
328 329
  os << "{";
  bool need_comma_kernels = false;
330
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
331 332 333
    if (need_comma_kernels) os << ",";
    os << "\"" << op_kernel_pair.first << "\":[";
    bool need_comma_per_kernel = false;
334
    for (const auto& kernel_pair : op_kernel_pair.second) {
335 336 337
      if (need_comma_per_kernel) os << ",";
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
338
    }
339 340
    os << "]";
    need_comma_kernels = true;
341
  }
342 343
  os << "}";

344 345 346
  return os;
}

347
}  // namespace phi