multi_devices_graph_builder.h 4.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
T
wip  
typhoonzero 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
T
wip  
typhoonzero 已提交
18 19
#include <vector>

Y
yuyang18 已提交
20
#include "paddle/fluid/framework/details/build_strategy.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
X
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31

namespace paddle {
namespace platform {
class NCCLContextMap;
}

namespace framework {
class Scope;
namespace details {
C
chengduoZH 已提交
32

Y
Yu Yang 已提交
33 34
class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
 public:
Y
Yu Yang 已提交
35
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
36 37 38 39
  MultiDevSSAGraphBuilder(const std::vector<platform::Place> &places,
                          const std::string &loss_var_name,
                          const std::unordered_set<std::string> &params,
                          const std::vector<Scope *> &local_scopes,
C
chengduoZH 已提交
40
                          platform::NCCLContextMap *nccl_ctxs,
Y
yuyang18 已提交
41
                          const BuildStrategy &strategy);
Y
Yu Yang 已提交
42 43 44 45
#else
  MultiDevSSAGraphBuilder(const std::vector<platform::Place> &places,
                          const std::string &loss_var_name,
                          const std::unordered_set<std::string> &params,
Y
Yu Yang 已提交
46
                          const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
47
                          const BuildStrategy &strategy);
Y
Yu Yang 已提交
48
#endif
49
  std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const override;
F
fengjiayi 已提交
50
  int GetVarDeviceID(const std::string &varname) const override;
51

T
wip  
typhoonzero 已提交
52
 private:
53
  void CreateOpHandleIOs(Graph *result, ir::Node *node, size_t device_id) const;
T
wip  
typhoonzero 已提交
54

Y
Yu Yang 已提交
55 56 57 58 59
 private:
  std::string loss_var_name_;
  const std::vector<platform::Place> &places_;
  const std::vector<Scope *> &local_scopes_;
  std::unordered_set<std::string> grad_names_;
Y
Yu Yang 已提交
60 61 62 63

#ifdef PADDLE_WITH_CUDA
  platform::NCCLContextMap *nccl_ctxs_;
#endif
Y
Yu Yang 已提交
64

65
  bool IsScaleLossOp(ir::Node *node) const;
Y
Yu Yang 已提交
66

67 68
  void CreateRPCOp(Graph *result, ir::Node *node) const;
  void CreateDistTrainOp(Graph *result, ir::Node *node) const;
Y
Yu Yang 已提交
69

Y
Yu Yang 已提交
70 71 72
  /**
   * Is this operator as the end-point operator before/after send operator.
   */
73
  bool IsDistTrainOp(ir::Node *node, const std::vector<std::string> &send_vars,
Y
fix pe  
Yancey1989 已提交
74 75 76
                     const std::vector<std::string> &recv_vars) const;

  std::vector<std::string> FindDistTrainSendVars(
77
      const std::vector<std::unique_ptr<ir::Node>> &nodes) const;
Y
fix pe  
Yancey1989 已提交
78 79

  std::vector<std::string> FindDistTrainRecvVars(
80
      const std::vector<std::unique_ptr<ir::Node>> &nodes) const;
T
typhoonzero 已提交
81

X
Xin Pan 已提交
82
  void ConnectOp(Graph *result, OpHandleBase *op,
Y
fix pe  
Yancey1989 已提交
83
                 const std::string &prev_op_name) const;
Y
Yancey1989 已提交
84

85
  void CreateComputationalOps(Graph *result, ir::Node *node,
T
typhoonzero 已提交
86
                              size_t num_places) const;
Y
Yu Yang 已提交
87

X
Xin Pan 已提交
88 89
  void CreateScaleLossGradOp(Graph *result) const;
  VarHandle *CreateReduceOp(Graph *result, const std::string &og,
C
chengduoZH 已提交
90
                            int dst_dev_id) const;
91
  void CreateComputationalOp(Graph *result, ir::Node *node, int dev_id) const;
Y
Yu Yang 已提交
92 93 94 95 96

  bool IsParameterGradientOnce(
      const std::string &og,
      std::unordered_set<std::string> *og_has_been_broadcast) const;

97
  int GetOpDeviceID(ir::Node *node) const;
C
chengduoZH 已提交
98

X
Xin Pan 已提交
99
  void InsertAllReduceOp(Graph *result, const std::string &og) const;
Y
Yu Yang 已提交
100

X
Xin Pan 已提交
101
  void InsertDataBalanceOp(Graph *result,
102 103
                           const std::vector<std::string> &datas) const;

X
Xin Pan 已提交
104
  void CreateBroadcastOp(Graph *result, const std::string &p_name,
C
chengduoZH 已提交
105
                         size_t src_dev_id) const;
C
chengduoZH 已提交
106

Y
Yancey1989 已提交
107 108 109 110
  bool IsSparseGradient(const std::string &og) const;

  size_t GetAppropriateDeviceID(
      const std::vector<std::string> &var_names) const;
Y
yuyang18 已提交
111 112 113

 private:
  BuildStrategy strategy_;
Y
Yancey1989 已提交
114
  mutable std::unordered_map<std::string, VarDesc *> all_vars_;
115
  mutable std::unordered_map<std::string, int> var_name_on_devices_;
Y
Yancey1989 已提交
116
  mutable std::vector<int64_t> balance_vars_;
C
chengduoZH 已提交
117 118 119

  void SetCommunicationContext(OpHandleBase *op_handle,
                               const platform::Place &p) const;
Y
Yu Yang 已提交
120 121 122 123
};
}  // namespace details
}  // namespace framework
}  // namespace paddle