test_metrics.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import os
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable

from paddle.incubate.hapi.metrics import *
from paddle.incubate.hapi.utils import to_list


def accuracy(pred, label, topk=(1, )):
    maxk = max(topk)
    pred = np.argsort(pred)[:, ::-1][:, :maxk]
    correct = (pred == np.repeat(label, maxk, 1))

    batch_size = label.shape[0]
    res = []
    for k in topk:
        correct_k = correct[:, :k].sum()
        res.append(correct_k / batch_size)
    return res


def convert_to_one_hot(y, C):
    oh = np.random.random((y.shape[0], C)).astype('float32') * .5
    for i in range(y.shape[0]):
        oh[i, int(y[i])] = 1.
    return oh


class TestAccuracyDynamic(unittest.TestCase):
    def setUp(self):
        self.topk = (1, )
        self.class_num = 5
        self.sample_num = 1000
        self.name = None

    def random_pred_label(self):
        label = np.random.randint(0, self.class_num,
                                  (self.sample_num, 1)).astype('int64')
        pred = np.random.randint(0, self.class_num,
                                 (self.sample_num, 1)).astype('int32')
        pred_one_hot = convert_to_one_hot(pred, self.class_num)
        pred_one_hot = pred_one_hot.astype('float32')

        return label, pred_one_hot

    def test_main(self):
        with fluid.dygraph.guard(fluid.CPUPlace()):
            acc = Accuracy(topk=self.topk, name=self.name)
            for _ in range(10):
                label, pred = self.random_pred_label()
                label_var = to_variable(label)
                pred_var = to_variable(pred)
                state = to_list(acc.add_metric_op(pred_var, label_var))
                acc.update(* [s.numpy() for s in state])
                res_m = acc.accumulate()
                res_f = accuracy(pred, label, self.topk)
                assert np.all(np.isclose(np.array(res_m, dtype='float64'), np.array(res_f, dtype='float64'), rtol=1e-3)), \
                        "Accuracy precision error: {} != {}".format(res_m, res_f)
                acc.reset()
                assert np.sum(acc.total) == 0
                assert np.sum(acc.count) == 0


class TestAccuracyDynamicMultiTopk(TestAccuracyDynamic):
    def setUp(self):
        self.topk = (1, 5)
        self.class_num = 10
        self.sample_num = 1000
        self.name = "accuracy"


class TestAccuracyStatic(TestAccuracyDynamic):
    def test_main(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            pred = fluid.data(
                name='pred', shape=[None, self.class_num], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            acc = Accuracy(topk=self.topk, name=self.name)
            state = acc.add_metric_op(pred, label)

        exe = fluid.Executor(fluid.CPUPlace())
        compiled_main_prog = fluid.CompiledProgram(main_prog)

        for _ in range(10):
            label, pred = self.random_pred_label()
            state_ret = exe.run(compiled_main_prog,
                                feed={'pred': pred,
                                      'label': label},
                                fetch_list=[s.name for s in to_list(state)],
                                return_numpy=True)
            acc.update(*state_ret)
            res_m = acc.accumulate()
            res_f = accuracy(pred, label, self.topk)
            assert np.all(np.isclose(np.array(res_m, dtype='float64'), np.array(res_f, dtype='float64'), rtol=1e-3)), \
                    "Accuracy precision error: {} != {}".format(res_m, res_f)
            acc.reset()
            assert np.sum(acc.total) == 0
            assert np.sum(acc.count) == 0


class TestAccuracyStaticMultiTopk(TestAccuracyStatic):
    def setUp(self):
        self.topk = (1, 5)
        self.class_num = 10
        self.sample_num = 1000
        self.name = "accuracy"


if __name__ == '__main__':
    unittest.main()