fp16_helper.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.distributed.fleet.meta_optimizers.common import is_optimizer_op, OP_ROLE_KEY, OpRole
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *

from paddle.fluid import core


class FP16Utils(object):
    def __init__(self):
        pass

    @staticmethod
    def is_fp16_cast_op(block, op, params):
        if op.type != "cast":
            return False
        if is_optimizer_op(op):
            return False
        assert (len(op.desc.input_arg_names()) == 1)
        assert (len(op.desc.output_arg_names()) == 1)
        input_name, output_name = op.desc.input_arg_names()[
            0], op.desc.output_arg_names()[0]
        if input_name not in params:
            return False
        input_var = block.var(input_name)
        output_var = block.var(output_name)
        if input_var.dtype != core.VarDesc.VarType.FP32 or \
            output_var.dtype != core.VarDesc.VarType.FP16:
            return False
        return True

    @staticmethod
    def is_fp32_cast_op(block, op):
        if op.type != "cast":
            return False
        if not is_optimizer_op(op):
            return False
        assert (len(op.desc.input_arg_names()) == 1)
        assert (len(op.desc.output_arg_names()) == 1)
        input_name, output_name = op.desc.input_arg_names()[
            0], op.desc.output_arg_names()[0]
        input_var = block.var(input_name)
        output_var = block.var(output_name)
        if input_var.dtype != core.VarDesc.VarType.FP16 or \
            output_var.dtype != core.VarDesc.VarType.FP32:
            return False
        return True

    @staticmethod
    def remove_cast_op(block, params, segment, offset):
        inserted_op_num = 0
        for op_idx in reversed(
                range(offset + segment._start_idx, offset + segment._end_idx)):
            op = block.ops[op_idx]
            if FP16Utils.is_fp16_cast_op(block, op, params):
                block._remove_op(op_idx, sync=False)
                inserted_op_num -= 1
        block._sync_with_cpp()
        return inserted_op_num

    @staticmethod
74 75 76 77 78
    def prune_fp16(block, shard, reduced_grads_to_param, ring_id):
        """
        1. prune all cast_fp32_to_fp16 ops if the param not belongs to this shard
        2. revise amp inifine grad checking for sharding
        """
79 80 81 82 83 84 85
        # remove cast
        for idx, op in reversed(list(enumerate(block.ops))):
            if not FP16Utils.is_fp32_cast_op(block, op):
                continue
            output_name = op.desc.output_arg_names()[0]
            param_name = output_name.strip("@GRAD")
            if param_name not in shard.global_params:
86 87 88
                raise ValueError("Output 'X' of cast_op must be a grad of"
                                 "model param, but {} is not a grad".format(
                                     output_name))
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            if output_name in reduced_grads_to_param:
                continue
            if shard.has_param(param_name):
                continue
            block._remove_op(idx, sync=False)
            block._remove_var(output_name, sync=False)

        block._sync_with_cpp()
        update_loss_scaling_op_idx = -1
        inf_var_name = ''
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == "update_loss_scaling":
                update_loss_scaling_op_idx = idx
                inf_var_name = op.desc.input('FoundInfinite')[0]
                op._rename_input(inf_var_name, inf_var_name + "@sharding")
            if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
                reversed_x = []
                for input_name in op.desc.input('X'):
                    param_name = input_name.strip("@GRAD")
                    if param_name not in shard.global_params:
                        raise ValueError(
                            "Input 'X' of check_finite_and_unscale must"
                            "be grads, but {} is not a grad".format(input_name))
                    if shard.has_param(param_name):
                        reversed_x.append(input_name)
                op.desc.set_input('X', reversed_x)
                op.desc.set_output('Out', reversed_x)
        if update_loss_scaling_op_idx == -1:
            return
        inf_var = block.var(inf_var_name)
        inf_var_fp32 = block.create_var(
            name=inf_var_name + "@cast_int32",
            shape=inf_var.shape,
            dtype=core.VarDesc.VarType.INT32)
        inf_var_sharding = block.create_var(
            name=inf_var_name + "@sharding",
            shape=inf_var.shape,
            dtype=inf_var.dtype)
        block._insert_op_without_sync(
            update_loss_scaling_op_idx,
            type='cast',
            inputs={'X': inf_var},
            outputs={'Out': inf_var_fp32},
            attrs={
                "in_dtype": inf_var.dtype,
                "out_dtype": inf_var_fp32.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })
        insert_sync_calc_op(block, update_loss_scaling_op_idx + 1,
                            [inf_var_fp32])
        block._insert_op_without_sync(
            update_loss_scaling_op_idx + 2,
            type='c_allreduce_max',
            inputs={'X': inf_var_fp32},
            outputs={'Out': inf_var_fp32},
144
            attrs={'ring_id': ring_id,
145
                   OP_ROLE_KEY: OpRole.Optimize})
146 147 148 149

        comm_op_num = insert_sync_comm_op(block, update_loss_scaling_op_idx + 3,
                                          ring_id, [inf_var_fp32])

150 151 152 153 154 155 156 157 158 159 160
        block._insert_op_without_sync(
            update_loss_scaling_op_idx + 3 + comm_op_num,
            type='cast',
            inputs={'X': inf_var_fp32},
            outputs={'Out': inf_var_sharding},
            attrs={
                "in_dtype": inf_var_fp32.dtype,
                "out_dtype": inf_var_sharding.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })
        block._sync_with_cpp()