var_conv_2d_op.cc 18.1 KB
Newer Older
K
Kevin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/var_conv_2d_op.h"
16
#include <memory>
K
Kevin 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <vector>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/mklml.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void VarConv2dOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("ROW", "(LoDTensor) the row variable provides lod information");
  AddInput("COLUMN",
           "(LoDTensor) the column variable provides lod information");
  AddInput("W", "W (Tensor), the filter.");
  AddAttr<int>("InputChannel", "the input filter num").SetDefault(1);
  AddAttr<int>("OutputChannel", "the output filter num").SetDefault(1);
  AddAttr<int>("StrideH", "the height of Stride").SetDefault(1);
  AddAttr<int>("StrideW", "the width of Stride").SetDefault(1);
  AddAttr<int>("KernelH", "the height of Kernel").SetDefault(1);
  AddAttr<int>("KernelW", "the width of Kernel").SetDefault(1);

  AddOutput("Out", "(LoDTensor, default LoDTensor<float>) Output variable");
  AddOutput("Col",
            "(LoDTensor, default LoDTensor<float>) the intermediate result "
            "variable");

  AddComment(R"DOC(
    Var Size Conv Operator

    This operator calculate Out = \sigma \left ( W * X + b \right ), 
    only support 2-D for X.
    
    NOTE: only support 'float32' data type now.

  )DOC");
}

void VarConv2dOP::InferShape(framework::InferShapeContext* ctx) const {
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("X(Input) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("W"), true,
      platform::errors::NotFound("W(Input) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("ROW"), true,
      platform::errors::NotFound("Input(ROW) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("COLUMN"), true,
      platform::errors::NotFound("Input(COLUMN) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Out(Output) of VarConv2dOP is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Col"), true,
      platform::errors::NotFound("Col(Output) of VarConv2dOP is not found."));
K
Kevin 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    "The rank of X(Input) can't be less than 2.");

  auto w_dims = ctx->GetInputDim("W");

  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "W should be 2-D tensor");
  int output_channel = ctx->Attrs().Get<int>("OutputChannel");
  int input_channel = ctx->Attrs().Get<int>("InputChannel");
  int kernel_h = ctx->Attrs().Get<int>("KernelH");
  int kernel_w = ctx->Attrs().Get<int>("KernelW");
  PADDLE_ENFORCE_EQ(w_dims[0], output_channel,
                    "W dim[0] should be equal to OutputChannel");
  PADDLE_ENFORCE_EQ(
      w_dims[1], input_channel * kernel_h * kernel_w,
      "W dim[1] should be equal to InputChannel * StrideH * StrideW");

  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
99
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
K
Kevin 已提交
100
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
101 102 103 104
    PADDLE_ENFORCE_EQ(
        !x_lod.empty(), true,
        platform::errors::InvalidArgument("The Input(X) Tensor of VarConv2dOP "
                                          "does not contain LoD information."));
K
Kevin 已提交
105 106 107 108 109 110 111

    PADDLE_ENFORCE_GE(x_lod.size(), 1, "The Input(X)'s lod info is corrupted.");
    PADDLE_ENFORCE_EQ(
        x_dims[0], static_cast<int64_t>(x_lod[0].back()),
        "The Input(X)'s lod info mismatches the actual tensor shape.");

    framework::Variable* row_var =
112
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("ROW")[0]);
K
Kevin 已提交
113
    const auto& row_lod = row_var->Get<LoDTensor>().lod();
114 115 116 117
    PADDLE_ENFORCE_EQ(!row_lod.empty(), true,
                      platform::errors::InvalidArgument(
                          "The Input(ROW) Tensor of VarConv2dOP does not "
                          "contain LoD information."));
K
Kevin 已提交
118 119

    framework::Variable* col_var =
120
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("COLUMN")[0]);
K
Kevin 已提交
121
    const auto& col_lod = col_var->Get<LoDTensor>().lod();
122 123 124 125
    PADDLE_ENFORCE_EQ(!col_lod.empty(), true,
                      platform::errors::InvalidArgument(
                          "The Input(COLUMN) Tensor of VarConv2dOP does not "
                          "contain LoD information."));
K
Kevin 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  } else {
    std::vector<int64_t> out_dims_vec{-1};
    out_dims_vec.push_back(1);
    std::vector<int64_t> col_dims_vec{-1};
    col_dims_vec.push_back(1);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
    ctx->SetOutputDim("Col", framework::make_ddim(col_dims_vec));
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPKernel : public framework::OpKernel<T> {
 public:
  void Im2Col(const framework::ExecutionContext& ctx, const LoDTensor& input,
              LoDTensor* col) const {
    int input_channel = ctx.Attr<int>("InputChannel");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    int batch = input.lod()[0].size() - 1;
    const auto& bottom_offset = input.lod()[0];
    // 2-D lod info.
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];

    // top offset is the whole size of each data sample
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_x = top_im_y * top_im_x;
      int top_y = input_channel * kernel_h * kernel_w;
      top_size += top_y * top_x;
      top_offset.push_back(top_size);
    }
    framework::LoD col_lod;
    col_lod.push_back(top_offset);
    col->set_lod(col_lod);
    std::vector<int64_t> col_dims_vec{top_size};
    col_dims_vec.push_back(1);
    auto* top_data = col->mutable_data<T>(framework::make_ddim(col_dims_vec),
                                          ctx.GetPlace());
    auto* bottom_data = input.data<T>();

    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] =
                      bottom_data[b_offset + im_offset + im_y * width + im_x];
                } else {
                  top_data[t_offset +
                           (row_offset + ky * kernel_w + kx) * top_x +
                           col_offset] = 0;
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* bottom = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* w = ctx.Input<Tensor>("W");
    auto* top = ctx.Output<LoDTensor>("Out");
    auto* col = ctx.Output<LoDTensor>("Col");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    Im2Col(ctx, *bottom, col);
    int batch = bottom->lod()[0].size() - 1;
    const auto& col_offset = col->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    std::vector<size_t> top_offset;
    int top_size = 0;
    top_offset.push_back(top_size);
    for (int b = 0; b < batch; ++b) {
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      int top_im_x = 0;
      if (width == 0) {
        top_im_x = 0;
      } else {
        top_im_x = (width - 1) / stride_w + 1;
      }
      int top_im_y = 0;
      if (height == 0) {
        top_im_y = 0;
      } else {
        top_im_y = (height - 1) / stride_h + 1;
      }
      int top_im_size = top_im_y * top_im_x;
      top_size += output_channel * top_im_size;
      top_offset.push_back(top_size);
    }

    framework::LoD top_lod;
    top_lod.push_back(top_offset);

    top->set_lod(top_lod);
    std::vector<int64_t> top_dims_vec{top_size};
    top_dims_vec.push_back(1);
    auto* top_data = top->mutable_data<T>(framework::make_ddim(top_dims_vec),
                                          ctx.GetPlace());

    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

      blas.GEMM(CblasNoTrans, CblasNoTrans, output_channel, top_im_size,
                input_channel * kernel_h * kernel_w, 1.0, w_data,
                col_data + col_offset[b], 0.0, top_data + top_offset[b]);
    }
  }
};

299 300 301 302 303
template <typename T>
class VarConv2dGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

304
  void Apply(GradOpPtr<T> op) const override {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("ROW", this->Input("ROW"));
    op->SetInput("COLUMN", this->Input("COLUMN"));
    op->SetInput("Col", this->Output("Col"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetAttrMap(this->Attrs());
  }
};

K
Kevin 已提交
320
void VarConv2dOpGrad::InferShape(framework::InferShapeContext* ctx) const {
321 322 323 324 325 326 327 328 329
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of SequencePadGradOp is not found."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                    platform::errors::NotFound(
                        "Input(W) of SequencePadGradOp is not found."));
  PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                    platform::errors::NotFound(
                        "Input(Out@GRAD) of SequencePadGradOp is not found."));
K
Kevin 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

template <typename DeviceContext, typename T>
class CPUVarConv2dOPGradKernel : public framework::OpKernel<T> {
 public:
  void Im2ColGrad(const framework::ExecutionContext& ctx, T* top_diff) const {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* in_row = ctx.Input<LoDTensor>("ROW");
    auto* in_col = ctx.Input<LoDTensor>("COLUMN");
    auto* col = ctx.Input<LoDTensor>("Col");

    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");
    int stride_h = ctx.Attr<int>("StrideH");
    int stride_w = ctx.Attr<int>("StrideW");

    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));

    const auto& bottom_offset = x->lod()[0];
    const auto& offset_x = in_col->lod()[0];
    const auto& offset_y = in_row->lod()[0];
    const auto& top_offset = col->lod()[0];
    int batch = x->lod()[0].size() - 1;
    int kernel_win_size = kernel_h * kernel_w;
    int half_kernel_h = kernel_h / 2;
    int half_kernel_w = kernel_w / 2;
    for (int b = 0; b < batch; ++b) {
      int t_offset = top_offset[b];
      int b_offset = bottom_offset[b];
      int width = offset_x[b + 1] - offset_x[b];
      int height = offset_y[b + 1] - offset_y[b];
      if (width == 0 || height == 0) {
        continue;
      }
      int top_im_x = (width - 1) / stride_w + 1;
      int top_im_y = (height - 1) / stride_h + 1;
      int top_x = top_im_y * top_im_x;
      for (int z = 0; z < input_channel; ++z) {
        int row_offset = kernel_win_size * z;
        int im_offset = z * width * height;
        for (int y = 0; y < height; y += stride_h) {
          for (int x = 0; x < width; x += stride_w) {
            int col_offset = x / stride_w + y / stride_h * top_im_x;
            for (int ky = 0; ky < kernel_h; ++ky) {
              for (int kx = 0; kx < kernel_w; ++kx) {
                int im_y = y + ky - half_kernel_h;
                int im_x = x + kx - half_kernel_w;
                if (im_x >= 0 && im_x < width && im_y >= 0 && im_y < height) {
                  dx_data[b_offset + im_offset + im_y * width + im_x] +=
                      top_diff[t_offset +
                               (row_offset + ky * kernel_w + kx) * top_x +
                               col_offset];
                }
              }
            }
          }
        }
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* w = ctx.Input<Tensor>("W");
    auto* col = ctx.Input<LoDTensor>("Col");
    auto* out = ctx.Input<LoDTensor>("Out");

    int output_channel = ctx.Attr<int>("OutputChannel");
    int input_channel = ctx.Attr<int>("InputChannel");
    int kernel_h = ctx.Attr<int>("KernelH");
    int kernel_w = ctx.Attr<int>("KernelW");

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));

    Tensor col_grad;
    col_grad.Resize(col->dims());
    auto* col_diff = col_grad.mutable_data<T>(ctx.GetPlace());
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* w_diff = d_w->mutable_data<T>(ctx.GetPlace());

    memset(dx_data, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(w_diff, 0.0, w->dims()[0] * w->dims()[1] * sizeof(T));
    memset(col_diff, 0.0, col->dims()[0] * col->dims()[1] * sizeof(T));
    auto* top_diff = d_out->data<T>();
    auto* w_data = w->data<T>();
    auto* col_data = col->data<T>();
    int batch = x->lod()[0].size() - 1;
    const auto& top_offset = out->lod()[0];
    const auto& col_offset = col->lod()[0];
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    for (int b = 0; b < batch; ++b) {
      int top_im_size = (top_offset[b + 1] - top_offset[b]) / output_channel;
      if (top_im_size == 0) {
        continue;
      }

      blas.GEMM(CblasTrans, CblasNoTrans, input_channel * kernel_h * kernel_w,
                top_im_size, output_channel, 1.0, w_data,
                top_diff + top_offset[b], 1.0, col_diff + col_offset[b]);

      blas.GEMM(CblasNoTrans, CblasTrans, output_channel,
                input_channel * kernel_h * kernel_w, top_im_size, 1.0,
                top_diff + top_offset[b], col_data + col_offset[b], 1.0,
                w_diff);
    }
    Im2ColGrad(ctx, col_diff);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plt = paddle::platform;
namespace frm = paddle::framework;
459 460 461
REGISTER_OPERATOR(var_conv_2d, ops::VarConv2dOP, ops::VarConv2dOpMaker,
                  ops::VarConv2dGradMaker<paddle::framework::OpDesc>,
                  ops::VarConv2dGradMaker<paddle::imperative::OpBase>);
K
Kevin 已提交
462 463 464 465 466 467 468 469 470 471 472
REGISTER_OPERATOR(var_conv_2d_grad, ops::VarConv2dOpGrad);

REGISTER_OP_CPU_KERNEL(var_conv_2d,
                       ops::CPUVarConv2dOPKernel<plt::CPUDeviceContext, float>);
//     ops::CPUVarConv2dOPKernel<plt::CPUDeviceContext,
//                                       double>
REGISTER_OP_CPU_KERNEL(
    var_conv_2d_grad,
    ops::CPUVarConv2dOPGradKernel<plt::CPUDeviceContext, float>);
//     ops::CPUVarConv2dOPGradKernel<plt::CPUDeviceContext,
//                                           double>