conv_shift_op.cu 6.6 KB
Newer Older
M
Markus Kliegl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/conv_shift_op.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {

using framework::Tensor;

namespace {

M
Markus Kliegl 已提交
25
inline int DivUp(int x, int y) { return (x + y - 1) / y; }
M
Markus Kliegl 已提交
26 27 28 29 30 31 32 33 34 35

// Some notes on the design:
//
// Each thread is responsible for computing a single output out[k, i].
// Thread blocks are based on tiles of x with height 1 in the batch dimension.
//
// This design is based on the typical use case where the filter
// y is fairly small. For large y, it would probably be more efficient
// to also tile across y.
template <typename T>
M
Markus Kliegl 已提交
36 37 38
__global__ void ConvShiftForward(const T *x, const T *y, T *out, int x_width,
                                 int y_width, int y_half_width,
                                 int batch_size) {
M
Markus Kliegl 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  extern __shared__ T mem[];

  int tx = threadIdx.x;
  int i = blockIdx.x * blockDim.x + tx;  // global x index
  int k = blockIdx.y;                    // batch index

  // Check if we are in a boundary block with fewer x's to process than
  // blockDim.x.
  int num_x =
      (blockIdx.x == gridDim.x - 1) ? (x_width % blockDim.x) : blockDim.x;

  T *sx = mem;
  T *sx_pad = &mem[num_x];
  T *sy = &mem[blockDim.x + y_width];

  // Collaboratively load y[k, :] and length-y padding of x into shared memory.
  int pad_start = blockIdx.x * blockDim.x + num_x + x_width - y_half_width;
  for (int j = tx; j < y_width; j += blockDim.x) {
    sy[j] = y[k * y_width + j];
    sx_pad[j] = x[k * x_width + (pad_start + j) % x_width];
  }

  // Load a cyclically shifted slice of x into shared memory.
  if (tx < num_x) {
    int load_i = (i - y_half_width + x_width) % x_width;
    sx[tx] = x[k * x_width + load_i];
  }
  __syncthreads();

68 69 70 71 72 73 74 75 76
  if (tx < num_x) {
    // Compute dot product of sx[tx:tx + y_width] and sy.
    T sum = 0;
    for (int j = 0; j < y_width; ++j) {
      sum += sx[tx + j] * sy[j];
    }

    // Save to out[k, i].
    out[k * x_width + i] = sum;
M
Markus Kliegl 已提交
77 78 79 80 81
  }
}

// Compute x gradient - initial naive implementation with atomic add.
template <typename T>
M
Markus Kliegl 已提交
82 83
__global__ void ConvShiftGradX(const T *dout, const T *y, T *dx, int x_width,
                               int y_width, int y_half_width, int batch_size) {
M
Markus Kliegl 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
  int i = blockIdx.x * blockDim.x + threadIdx.x;  // x index
  int j = blockIdx.y;                             // y index
  int k = blockIdx.z;                             // batch index

  if (i < x_width) {
    int index = (i + j - y_half_width + x_width) % x_width;
    atomicAdd(&dx[k * x_width + index],
              dout[k * x_width + i] * y[k * y_width + j]);
  }
}

// Compute y gradient - initial naive implementation with atomic add.
template <typename T>
M
Markus Kliegl 已提交
97 98
__global__ void ConvShiftDy(const T *x, const T *dout, T *dy, int x_width,
                            int y_width, int y_half_width, int batch_size) {
M
Markus Kliegl 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  int i = blockIdx.x * blockDim.x + threadIdx.x;  // x index
  int j = blockIdx.y;                             // y index
  int k = blockIdx.z;                             // batch index

  if (i < x_width) {
    int index = (i + j - y_half_width + x_width) % x_width;
    atomicAdd(&dy[k * y_width + j],
              x[k * x_width + index] * dout[k * x_width + i]);
  }
}
}  // namespace

template <typename T>
class ConvShiftKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Y = context.Input<Tensor>("Y");
    Tensor *Out = context.Output<Tensor>("Out");
    const T *x_data = X->data<T>();
    const T *y_data = Y->data<T>();
    T *out_data = Out->mutable_data<T>(context.GetPlace());

    int batch_size = X->dims()[0];
    int x_width = X->dims()[1];
    int y_width = Y->dims()[1];
    int y_half_width = (y_width - 1) / 2;

    const int x_per_block = 256;
M
Markus Kliegl 已提交
128
    int num_x_blocks = DivUp(x_width, x_per_block);
M
Markus Kliegl 已提交
129 130 131 132
    int mem_per_block = (x_per_block + 2 * y_width) * sizeof(T);

    dim3 grid_dim(num_x_blocks, batch_size);

T
typhoonzero 已提交
133
    auto stream = context.cuda_device_context().stream();
M
Markus Kliegl 已提交
134

M
Markus Kliegl 已提交
135
    ConvShiftForward<T><<<grid_dim, x_per_block, mem_per_block, stream>>>(
M
Markus Kliegl 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        x_data, y_data, out_data, x_width, y_width, y_half_width, batch_size);
  }
};

template <typename T>
class ConvShiftGradKernel<platform::GPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Y = context.Input<Tensor>("Y");
    const Tensor *dOut = context.Input<Tensor>(framework::GradVarName("Out"));
    const T *x_data = X->data<T>();
    const T *y_data = Y->data<T>();
    const T *dout_data = dOut->data<T>();

    Tensor *dX = context.Output<Tensor>(framework::GradVarName("X"));
    Tensor *dY = context.Output<Tensor>(framework::GradVarName("Y"));

    int batch_size = X->dims()[0];
    int x_width = X->dims()[1];
    int y_width = Y->dims()[1];
    int y_half_width = (y_width - 1) / 2;

T
typhoonzero 已提交
160
    auto stream = context.cuda_device_context().stream();
M
Markus Kliegl 已提交
161 162

    const int x_per_block = 256;
M
Markus Kliegl 已提交
163
    int num_x_blocks = DivUp(x_width, x_per_block);
M
Markus Kliegl 已提交
164 165 166 167 168
    dim3 grid_dim(num_x_blocks, y_width, batch_size);

    if (dX) {
      T *dx_data = dX->mutable_data<T>(context.GetPlace());
      cudaMemsetAsync(dx_data, 0, dX->numel() * sizeof(T), stream);
M
Markus Kliegl 已提交
169
      ConvShiftGradX<T><<<grid_dim, x_per_block, 0, stream>>>(
M
Markus Kliegl 已提交
170 171 172 173 174 175
          dout_data, y_data, dx_data, x_width, y_width, y_half_width,
          batch_size);
    }
    if (dY) {
      T *dy_data = dY->mutable_data<T>(context.GetPlace());
      cudaMemsetAsync(dy_data, 0, dY->numel() * sizeof(T), stream);
M
Markus Kliegl 已提交
176
      ConvShiftDy<T><<<grid_dim, x_per_block, 0, stream>>>(
M
Markus Kliegl 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190
          x_data, dout_data, dy_data, x_width, y_width, y_half_width,
          batch_size);
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(conv_shift,
                       ops::ConvShiftKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
    conv_shift_grad,
    ops::ConvShiftGradKernel<paddle::platform::GPUPlace, float>);