matrix_nms_kernel.cc 10.7 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/matrix_nms_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
18 19
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
Z
zhiboniu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1,
                               const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <typename T, bool gaussian>
struct decay_score;

template <typename T>
struct decay_score<T, true> {
  T operator()(T iou, T max_iou, T sigma) {
    return std::exp((max_iou * max_iou - iou * iou) * sigma);
  }
};

template <typename T>
struct decay_score<T, false> {
  T operator()(T iou, T max_iou, T sigma) {
    return (1. - iou) / (1. - max_iou);
  }
};

template <typename T, bool gaussian>
void NMSMatrix(const DenseTensor& bbox,
               const DenseTensor& scores,
               const T score_threshold,
               const T post_threshold,
               const float sigma,
               const int64_t top_k,
               const bool normalized,
               std::vector<int>* selected_indices,
               std::vector<T>* decayed_scores) {
  int64_t num_boxes = bbox.dims()[0];
  int64_t box_size = bbox.dims()[1];

  auto score_ptr = scores.data<T>();
  auto bbox_ptr = bbox.data<T>();

  std::vector<int32_t> perm(num_boxes);
  std::iota(perm.begin(), perm.end(), 0);
  auto end = std::remove_if(
      perm.begin(), perm.end(), [&score_ptr, score_threshold](int32_t idx) {
        return score_ptr[idx] <= score_threshold;
      });

  auto sort_fn = [&score_ptr](int32_t lhs, int32_t rhs) {
    return score_ptr[lhs] > score_ptr[rhs];
  };

  int64_t num_pre = std::distance(perm.begin(), end);
  if (num_pre <= 0) {
    return;
  }
  if (top_k > -1 && num_pre > top_k) {
    num_pre = top_k;
  }
  std::partial_sort(perm.begin(), perm.begin() + num_pre, end, sort_fn);

  std::vector<T> iou_matrix((num_pre * (num_pre - 1)) >> 1);
  std::vector<T> iou_max(num_pre);

  iou_max[0] = 0.;
  for (int64_t i = 1; i < num_pre; i++) {
    T max_iou = 0.;
    auto idx_a = perm[i];
    for (int64_t j = 0; j < i; j++) {
      auto idx_b = perm[j];
      auto iou = JaccardOverlap<T>(
          bbox_ptr + idx_a * box_size, bbox_ptr + idx_b * box_size, normalized);
      max_iou = std::max(max_iou, iou);
      iou_matrix[i * (i - 1) / 2 + j] = iou;
    }
    iou_max[i] = max_iou;
  }

  if (score_ptr[perm[0]] > post_threshold) {
    selected_indices->push_back(perm[0]);
    decayed_scores->push_back(score_ptr[perm[0]]);
  }

  decay_score<T, gaussian> decay_fn;
  for (int64_t i = 1; i < num_pre; i++) {
    T min_decay = 1.;
    for (int64_t j = 0; j < i; j++) {
      auto max_iou = iou_max[j];
      auto iou = iou_matrix[i * (i - 1) / 2 + j];
      auto decay = decay_fn(iou, max_iou, sigma);
      min_decay = std::min(min_decay, decay);
    }
    auto ds = min_decay * score_ptr[perm[i]];
    if (ds <= post_threshold) continue;
    selected_indices->push_back(perm[i]);
    decayed_scores->push_back(ds);
  }
}

template <typename T>
size_t MultiClassMatrixNMS(const DenseTensor& scores,
                           const DenseTensor& bboxes,
                           std::vector<T>* out,
                           std::vector<int>* indices,
                           int start,
                           int64_t background_label,
                           int64_t nms_top_k,
                           int64_t keep_top_k,
                           bool normalized,
                           T score_threshold,
                           T post_threshold,
                           bool use_gaussian,
                           float gaussian_sigma) {
  std::vector<int> all_indices;
  std::vector<T> all_scores;
  std::vector<T> all_classes;
  all_indices.reserve(scores.numel());
  all_scores.reserve(scores.numel());
  all_classes.reserve(scores.numel());

  size_t num_det = 0;
  auto class_num = scores.dims()[0];
  DenseTensor score_slice;
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
    score_slice = scores.Slice(c, c + 1);
    if (use_gaussian) {
      NMSMatrix<T, true>(bboxes,
                         score_slice,
                         score_threshold,
                         post_threshold,
                         gaussian_sigma,
                         nms_top_k,
                         normalized,
                         &all_indices,
                         &all_scores);
    } else {
      NMSMatrix<T, false>(bboxes,
                          score_slice,
                          score_threshold,
                          post_threshold,
                          gaussian_sigma,
                          nms_top_k,
                          normalized,
                          &all_indices,
                          &all_scores);
    }
    for (size_t i = 0; i < all_indices.size() - num_det; i++) {
      all_classes.push_back(static_cast<T>(c));
    }
    num_det = all_indices.size();
  }

  if (num_det <= 0) {
    return num_det;
  }

  if (keep_top_k > -1) {
    auto k = static_cast<size_t>(keep_top_k);
    if (num_det > k) num_det = k;
  }

  std::vector<int32_t> perm(all_indices.size());
  std::iota(perm.begin(), perm.end(), 0);

  std::partial_sort(perm.begin(),
                    perm.begin() + num_det,
                    perm.end(),
                    [&all_scores](int lhs, int rhs) {
                      return all_scores[lhs] > all_scores[rhs];
                    });

  for (size_t i = 0; i < num_det; i++) {
    auto p = perm[i];
    auto idx = all_indices[p];
    auto cls = all_classes[p];
    auto score = all_scores[p];
    auto bbox = bboxes.data<T>() + idx * bboxes.dims()[1];
    (*indices).push_back(start + idx);
    (*out).push_back(cls);
    (*out).push_back(score);
    for (int j = 0; j < bboxes.dims()[1]; j++) {
      (*out).push_back(bbox[j]);
    }
  }

  return num_det;
}

template <typename T, typename Context>
void MatrixNMSKernel(const Context& ctx,
                     const DenseTensor& bboxes,
                     const DenseTensor& scores,
                     float score_threshold,
                     int nms_top_k,
                     int keep_top_k,
                     float post_threshold,
                     bool use_gaussian,
                     float gaussian_sigma,
                     int background_label,
                     bool normalized,
                     DenseTensor* out,
                     DenseTensor* index,
                     DenseTensor* roisnum) {
260
  auto score_dims = phi::vectorize<int>(scores.dims());
Z
zhiboniu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  auto batch_size = score_dims[0];
  auto num_boxes = score_dims[2];
  auto box_dim = bboxes.dims()[2];
  auto out_dim = box_dim + 2;

  DenseTensor boxes_slice, scores_slice;
  size_t num_out = 0;
  std::vector<size_t> offsets = {0};
  std::vector<T> detections;
  std::vector<int> indices;
  std::vector<int> num_per_batch;
  detections.reserve(out_dim * num_boxes * batch_size);
  indices.reserve(num_boxes * batch_size);
  num_per_batch.reserve(batch_size);
  for (int i = 0; i < batch_size; ++i) {
    scores_slice = scores.Slice(i, i + 1);
    scores_slice.Resize({score_dims[1], score_dims[2]});
    boxes_slice = bboxes.Slice(i, i + 1);
    boxes_slice.Resize({score_dims[2], box_dim});
    int start = i * score_dims[2];
    num_out = MultiClassMatrixNMS(scores_slice,
                                  boxes_slice,
                                  &detections,
                                  &indices,
                                  start,
                                  background_label,
                                  nms_top_k,
                                  keep_top_k,
                                  normalized,
                                  static_cast<T>(score_threshold),
                                  static_cast<T>(post_threshold),
                                  use_gaussian,
                                  gaussian_sigma);
    offsets.push_back(offsets.back() + num_out);
    num_per_batch.emplace_back(num_out);
  }

  int64_t num_kept = offsets.back();
  if (num_kept == 0) {
    out->Resize(phi::make_ddim({0, out_dim}));
    ctx.template Alloc<T>(out);
    index->Resize(phi::make_ddim({0, 1}));
    ctx.template Alloc<int>(index);
  } else {
    out->Resize(phi::make_ddim({num_kept, out_dim}));
    ctx.template Alloc<T>(out);
    index->Resize(phi::make_ddim({num_kept, 1}));
    ctx.template Alloc<int>(index);
    std::copy(detections.begin(), detections.end(), out->data<T>());
    std::copy(indices.begin(), indices.end(), index->data<int>());
  }

  if (roisnum != nullptr) {
    roisnum->Resize(phi::make_ddim({batch_size}));
    ctx.template Alloc<int>(roisnum);
    std::copy(num_per_batch.begin(), num_per_batch.end(), roisnum->data<int>());
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
323 324 325 326
    matrix_nms, CPU, ALL_LAYOUT, phi::MatrixNMSKernel, float, double) {
  kernel->OutputAt(1).SetDataType(phi::DataType::INT32);
  kernel->OutputAt(2).SetDataType(phi::DataType::INT32);
}