NeuralNetwork.h 5.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#pragma once

#include <memory>
#include <map>
#include <functional>

#include "paddle/utils/ClassRegistrar.h"
#include "paddle/parameter/Parameter.h"
#include "ModelConfig.pb.h"
#include "paddle/gserver/gradientmachines/GradientMachine.h"
#include "paddle/gserver/layers/CostLayer.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/gserver/dataproviders/DataProvider.h"
#include "paddle/gserver/layers/Layer.h"

namespace paddle {
/*
 * @brief  Init function for the parameters.
 * @param paramId: the id of the parameter to init.
 * @param para: the pointer to the parameter to init.
 * @param sharedParams: the pointer to an array of the parameter to be shared.
 *                      If it is null, no parameter sharing is used.
 *                      Only CPU paramters can be shared.
 * It handles CPU, CPU sparse, CPU sparse remote,
 * and GPU parameters differently. If the type
 * of a parameter is NORMAL. Basically nothing need to be done.
 * CPU value: NORMAL.
 * CPU param: NORMAL.
 *
 * CPU sparse value: NORMAL.
 * CPU sparse gradient: MAT_SPARSE_ROW_AUTO_GROW.
 *
 * CPU sparse remote value: MAT_SPARSE_ROW_PREFETCH(_FULL_SIZE).
 * CPU sparse remote gradient: MAT_SPARSE_ROW (!sharedParams)
 *                             MAT_SPARSE_ROW_AUTO_GROW (sharedParams)
 *
 * GPU value: NORMAL
 * GPU param: NORMAL
 */
void parameterInitNN(int paramId, Parameter* para,
                     std::vector<ParameterPtr>* sharedParams);


class NeuralNetwork : public GradientMachine {
public:
  virtual void init(
      const ModelConfig& config, ParamInitCallback callback = nullptr,
      const std::vector<ParameterType>&
          parameterTypes = std::vector<ParameterType>{PARAMETER_VALUE,
                                                      PARAMETER_GRADIENT,
                                                      PARAMETER_MOMENTUM},
      bool useGpu = FLAGS_use_gpu);

  // connect two submodels
  // down-submodel's output become up-submodel's input
  // *realLayer* is down-submodel's output layer
  // *agentLayer* is up-submodel's input agent layer
  // by default, connection is one by one,
  // if the agent height is smaller than real layer, *height* has to be filled
  static void connect(LayerPtr agentLayer, LayerPtr realLayer, int height = 0);
  void connect(std::string agentLayerName, NeuralNetwork* srcNN,
               std::string realLayerName);

  virtual void prefetch(const std::vector<Argument>& inArgs);

  virtual void forward(const std::vector<Argument>& inArgs,
                       std::vector<Argument>* outArgs, PassType passType);

  virtual void backward(const UpdateCallback& callback = nullptr);

  MatrixPtr getLayerOutput(const std::string& layerName);
  const LayerPtr& getLayer(const std::string& layerName) const {
    auto it = layerMap_.find(layerName);
    CHECK(it != layerMap_.end()) << "Unknown layer " << layerName;
    return it->second;
  }

  virtual void onPassEnd();

  virtual Evaluator* makeEvaluator();

  virtual void eval(Evaluator* evaluator);
  virtual void resetState();
  virtual void setOutputGrad(const std::vector<Argument>& args);

  // set machine state
  virtual void setState(const MachineState& machineState);

  // get machine state
  virtual void getState(MachineState& machineState);

  static NeuralNetwork* create(const ModelConfig& config);

  ParameterMap* getParameterMap() { return &parameterMap_; }

  /**
   * @brief Access each layer as a for each loop.
   * @param callback invoke with each layer.
   */
  template <typename T>
  void forEachLayer(T callback) {
    for (auto & l : layers_) {
      if (callback(l)) {
        break;
      }
    }
  }


  static NeuralNetwork* newNeuralNetwork(const std::string& name = "",
                                        NeuralNetwork* rootNetwork = nullptr);

protected:
  // rootNetwork: used in MultiNetwork
  // sub networks can get parameters_ and parameterMap_ from base NeuralNetwork
  NeuralNetwork(std::string subModelName = "",
                NeuralNetwork* rootNetwork = nullptr)
      : subModelName_(subModelName),
        rootNetwork_(rootNetwork) {}

  std::string subModelName_;
  ModelConfig config_;
  std::vector<LayerPtr> layers_;
  ParameterMap parameterMap_;
  LayerMap layerMap_;

  std::vector<DataLayerPtr> dataLayers_;
  std::vector<LayerPtr> outputLayers_;

  static std::map<std::string, bool> dllInitMap;

  NeuralNetwork* rootNetwork_;

  // Whether parameter of this NN is initialized by its own
  // (i.e., not by callback supplied with the caller)
  bool paramSelfInited_;
};

}  // namespace paddle