teacher_student_sigmoid_loss_op.cc 9.3 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

H
heqiaozhi 已提交
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32 33 34 35 36
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "teacher_student_sigmoid_loss");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
                   "teacher_student_sigmoid_loss");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y",
                   "teacher_student_sigmoid_loss");
H
heqiaozhi 已提交
37 38 39

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
40 41 42 43 44 45 46 47 48 49
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2UL,
        platform::errors::NotFound("Input(X)'s rank should be 2. But received: "
                                   "Input(X)'s rank is [%d]",
                                   x_dims.size()));
    PADDLE_ENFORCE_EQ(
        label_dims.size(), 2UL,
        platform::errors::NotFound("Input(Label)'s rank should be 2. But "
                                   "received Input(Label)'s rank is [%d]",
                                   label_dims.size()));
H
heqiaozhi 已提交
50
    if (ctx->IsRuntime()) {
51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(
          x_dims[0], label_dims[0],
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
              "be equal. The diff is [%d] vs [%d]",
              x_dims[0], label_dims[0]));
H
heqiaozhi 已提交
57
      PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
58 59 60 61 62
                        platform::errors::InvalidArgument(
                            "The 2nd dimension of "
                            "Input(Label) should be 1. But received "
                            "Input(Label)'s 2nd dim is [%d]",
                            label_dims[1]));
H
heqiaozhi 已提交
63
    }
H
heqiaozhi 已提交
64 65 66 67 68 69 70 71 72 73
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
74 75 76
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
77 78 79
  }
};

H
hong 已提交
80 81 82
template <typename T>
class TeacherStudentSigmoidLossGradOpMaker
    : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
83
 public:
H
hong 已提交
84
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
85 86

 protected:
87
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
88 89
    op->SetType("teacher_student_sigmoid_loss_grad");

H
hong 已提交
90 91 92
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
H
Huihuang Zheng 已提交
93

H
hong 已提交
94
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
H
Huihuang Zheng 已提交
95

H
hong 已提交
96
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
97 98 99
  }
};

H
heqiaozhi 已提交
100 101 102 103 104 105
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
106 107 108 109 110 111 112 113
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "X",
                   "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   "Y@Grad", "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Input",
                   "X@Grad", "teacher_student_sigmoid_loss_grad");
H
heqiaozhi 已提交
114 115 116 117

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Input(X)'s rank should be 2. But received Input(X)'s rank is [%d]",
            x_dims.size()));
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "Input(Y@Grad)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          dy_dims.size()));
    PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "Input(Label)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          label_dims.size()));
H
heqiaozhi 已提交
133
    if (ctx->IsRuntime()) {
134 135 136 137 138 139
      PADDLE_ENFORCE_EQ(
          x_dims[0], label_dims[0],
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
              "be equal. The diff is [%d] vs [%d]",
              x_dims[0], label_dims[0]));
H
heqiaozhi 已提交
140 141
      PADDLE_ENFORCE_EQ(
          x_dims[0], dy_dims[0],
142 143 144 145
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Y@Grad) should "
              "be equal. The diff is [%d] vs [%d]",
              x_dims[0], dy_dims[0]));
H
heqiaozhi 已提交
146
      PADDLE_ENFORCE_EQ(dy_dims[1], 1,
147 148 149 150 151 152 153 154 155 156 157
                        platform::errors::InvalidArgument(
                            "The 2nd dimension of Input(Y@Grad) should be 1. "
                            "But received Input(Y@Grad)'s 2nd dim is [%d]",
                            dy_dims[1]));
      PADDLE_ENFORCE_EQ(
          label_dims[1], 1,
          platform::errors::InvalidArgument(
              "When Attr(soft_label) == false, the 2nd dimension of "
              "Input(Label) should be 1. But received Input(Label)'s 2nd dim "
              "is [%d]",
              label_dims[1]));
H
heqiaozhi 已提交
158
    }
H
heqiaozhi 已提交
159 160 161 162 163 164 165 166 167 168
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
169 170 171
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
             "(Tensor), the ground truth which is a 2-D tensor. "
             "Label is a Tensor<float> with shape [N x 1]. ");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape "
              "[N x 1]. The teacher student sigmoid loss.");
190 191
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
192
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
193
        .SetDefault(15.0);
H
heqiaozhi 已提交
194 195 196
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
197 198 199 200 201 202 203 204
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
205
        z' is teacher value 
H
heqiaozhi 已提交
206 207 208
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
209
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
210 211 212 213 214 215 216 217 218 219
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
220 221 222 223 224
REGISTER_OPERATOR(
    teacher_student_sigmoid_loss, ops::TeacherStudentSigmoidLossOp,
    ops::TeacherStudentSigmoidLossOpMaker,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::framework::OpDesc>,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
225 226 227 228 229 230 231 232 233 234 235

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);