creation.h 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/pten/api/lib/utils/storage.h"
18
#include "paddle/pten/include/infermeta.h"
19
#include "paddle/pten/kernels/empty_kernel.h"
20
#include "paddle/pten/kernels/full_kernel.h"
21 22 23 24 25

namespace pten {

// TODO(YuanRisheng) This function name should be same as User API name.
// TODO(zyfncg) Automatic code generation
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
template <typename T, typename ContextT>
DenseTensor Empty(const ContextT& dev_ctx,
                  const ScalarArray& shape,
                  DataType dtype = DataType::FLOAT32,
                  Backend backend = Backend::CPU,  // Is backend needed here?
                  DataLayout layout = DataLayout::NCHW) {
  auto out_meta = CreateInferMeta(shape, dtype, layout);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
  Empty<T, ContextT>(dev_ctx, shape, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor EmptyLike(
    const ContextT& dev_ctx,
    const DenseTensor& x,
    DataType dtype = DataType::UNDEFINED,
    Backend backend = Backend::UNDEFINED,  // Is backend needed here?
    DataLayout layout = DataLayout::UNDEFINED) {
  auto out_meta = CreateLikeInferMeta(x.meta(), dtype, layout);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
  EmptyLike<T, ContextT>(dev_ctx, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Full(const ContextT& dev_ctx,
                 const ScalarArray& shape,
                 const Scalar& val,
                 DataType dtype = DataType::FLOAT32,
                 Backend backend = Backend::CPU,  // Is backend needed here?
                 DataLayout layout = DataLayout::NCHW) {
  auto out_meta = CreateInferMeta(shape, dtype, layout);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
  Full<T, ContextT>(dev_ctx, shape, val, &dense_out);
  return dense_out;
}

73
template <typename T, typename ContextT>
74
DenseTensor FullLike(
75 76 77 78 79 80
    const ContextT& dev_ctx,
    const DenseTensor& x,
    const Scalar& val,
    DataType dtype = DataType::UNDEFINED,
    Backend backend = Backend::UNDEFINED,  // Is backend needed here?
    DataLayout layout = DataLayout::UNDEFINED) {
Z
zyfncg 已提交
81
  auto out_meta = CreateLikeInferMeta(x.meta(), dtype, layout);
82 83 84 85
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
86
  FullLike<T, ContextT>(dev_ctx, val, &dense_out);
87 88 89 90
  return dense_out;
}

}  // namespace pten