positive_negative_pair_op.cc 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/positive_negative_pair_op.h"
13
#include "paddle/fluid/platform/enforce.h"
14 15 16 17 18 19 20 21 22

namespace paddle {
namespace operators {

class PositiveNegativePairOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
23 24 25 26 27 28 29 30 31 32 33 34 35
    OP_INOUT_CHECK(ctx->HasInput("Score"), "Input", "Score",
                   "positive_negative_pair");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
                   "positive_negative_pair");
    OP_INOUT_CHECK(ctx->HasInput("QueryID"), "Input", "QueryID",
                   "positive_negative_pair");
    OP_INOUT_CHECK(ctx->HasOutput("PositivePair"), "Output", "PositivePair",
                   "positive_negative_pair");
    OP_INOUT_CHECK(ctx->HasOutput("NegativePair"), "Output", "NegativePair",
                   "positive_negative_pair");
    OP_INOUT_CHECK(ctx->HasOutput("NeutralPair"), "Output", "NeutralPair",
                   "positive_negative_pair");

36 37 38 39 40 41 42 43 44 45 46
    auto scalar_dim = framework::make_ddim({1});
    if (ctx->HasInput("AccumulatePositivePair") ||
        ctx->HasInput("AccumulateNegativePair") ||
        ctx->HasInput("AccumulateNeutralPair")) {
      PADDLE_ENFORCE(ctx->HasInput("AccumulatePositivePair") &&
                         ctx->HasInput("AccumulateNegativePair") &&
                         ctx->HasInput("AccumulateNeutralPair"),
                     "All optional inputs(AccumulatePositivePair, "
                     "AccumulateNegativePair, AccumulateNeutralPair) of "
                     "PositiveNegativePairOp are required if one of them is "
                     "specified.");
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("AccumulatePositivePair"), scalar_dim,
          platform::errors::InvalidArgument(
              "Shape of Input(AccumulatePositivePair) should be [1]. Received "
              "shape of Input(AccumulatePositivePair): [%s].",
              ctx->GetInputDim("AccumulatePositivePair")));
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("AccumulateNegativePair"), scalar_dim,
          platform::errors::InvalidArgument(
              "Shape of Input(AccumulateNegativePair) should be [1]. Received "
              "shape of Input(AccumulateNegativePair): [%s].",
              ctx->GetInputDim("AccumulateNegativePair")));
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("AccumulateNeutralPair"), scalar_dim,
          platform::errors::InvalidArgument(
              "Shape of Input(AccumulateNeutralPair) should be [1]. Received "
              "shape of Input(AccumulateNeutralPair): [%s].",
              ctx->GetInputDim("AccumulateNeutralPair")));
65
    }
66 67 68

    auto score_dim = ctx->GetInputDim("Score");
    auto label_dim = ctx->GetInputDim("Label");
69
    auto query_dim = ctx->GetInputDim("QueryID");
70 71 72 73 74 75 76 77 78 79
    PADDLE_ENFORCE_EQ(score_dim.size(), 2,
                      platform::errors::InvalidArgument(
                          "Score should be a 2-D tensor. Received shape of "
                          "Input(Score): [%s].",
                          score_dim));
    PADDLE_ENFORCE_EQ(label_dim.size(), 2,
                      platform::errors::InvalidArgument(
                          "Label should be a 2-D tensor. Received shape of "
                          "Input(Label): [%s].",
                          label_dim));
80 81 82 83 84

    if (ctx->IsRuntime() ||
        (score_dim[0] > 0 && label_dim[0] > 0 && query_dim[0] > 0)) {
      PADDLE_ENFORCE_EQ(
          label_dim[0], score_dim[0],
85 86 87 88 89 90
          platform::errors::InvalidArgument(
              "Input(Score) and Input(Label) should have the same "
              "height (batch size). Received: the shape of Input(Score) is "
              "[%s], while the shape of Input(Label) is [%s]. The first "
              "dimensions of them are different.",
              label_dim, score_dim));
91

92 93 94 95 96 97 98
      PADDLE_ENFORCE_EQ(
          label_dim[1], 1,
          platform::errors::InvalidArgument(
              "The width of Label should be 1, i.e. each item should "
              "have a scalar label. Received shape of Input(Label) is [%s]. "
              "The second dimension of it is %d, while the expected is %d.",
              label_dim, label_dim[1], 1));
99

100 101 102 103 104 105 106
      PADDLE_ENFORCE_EQ(
          query_dim, label_dim,
          platform::errors::InvalidArgument(
              "Input(QueryID) should have the same shape as Input(Label). "
              "Received: the shape of Input(QueryID) is [%s], "
              "while the shape of Input(Label) is [%s].",
              query_dim, label_dim));
107 108

      if (ctx->HasInput("Weight")) {
109 110 111 112 113 114 115
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Weight"), label_dim,
            platform::errors::InvalidArgument(
                "Input(Weight) should have the same shape as Input(Label). "
                "Received: the shape of Input(Weight) is [%s] while the shape "
                "of Input(Label) is [%s].",
                ctx->GetInputDim("Weight"), label_dim));
116 117 118 119
      }

      int column = ctx->Attrs().Get<int>("column");
      auto depth = score_dim[1];
120 121 122 123 124 125 126 127 128 129 130 131 132 133
      PADDLE_ENFORCE_LT(
          column, depth,
          platform::errors::OutOfRange(
              "Attr(column) should be less than depth(the second "
              "dimension of Input(Score)). Recieved Attr(column): %d, while "
              "depth is %d.",
              column, depth));
      PADDLE_ENFORCE_GE(
          column, -depth,
          platform::errors::OutOfRange(
              "Attr(column) should be greater than equal to negative "
              "depth, i.e. the second dimension of Input(Score). "
              "Recieved Attr(column): %d, while negative depth is %d.",
              column, -depth));
134
    }
135

136 137 138
    ctx->SetOutputDim("PositivePair", scalar_dim);
    ctx->SetOutputDim("NegativePair", scalar_dim);
    ctx->SetOutputDim("NeutralPair", scalar_dim);
139 140 141
  }

 protected:
142
  framework::OpKernelType GetExpectedKernelType(
143
      const framework::ExecutionContext &ctx) const override {
144 145 146
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Score"),
        ctx.device_context());
147 148 149 150 151
  }
};

class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
152
  void Make() override {
153
    AddInput("Score",
154 155 156 157
             "(Tensor, float) Model Score on an item (with "
             "respect to QueryID). It's a 2-D tensor with shape [batch_size, "
             "depth], where the column specified by the attribute \"column\" "
             "is used as item score.");
158
    AddInput("Label",
159 160 161
             "(Tensor, float) Label of an item (with repsect to "
             "QueryId). It's a 2-D tensor with shape [batch_size, 1].");
    AddInput("QueryID",
Z
zhouxiao-coder 已提交
162
             "(Tensor, int64) Query ID that indicates the context. Its shape "
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
             "should be the same as Label.");
    AddInput(
        "AccumulatePositivePair",
        "(float) Optional. The accumulated number of positive pairs over a "
        "stream of data. If provided, the output PositivePair will be "
        "initialized with this number rather than 0. it won't be modified "
        "in place.")
        .AsDispensable();
    AddInput(
        "AccumulateNegativePair",
        "(float) Optional. The accumulated number of negative pairs over a "
        "stream of data. If provided, the output NegativePair will be "
        "initialized with this number rather than 0. it won't be modified "
        "in place.")
        .AsDispensable();
    AddInput("AccumulateNeutralPair",
             "(float) Optional. The accumulated number of neutral pairs over a "
             "stream of data. If provided, the output NeutralPair will be "
             "initialized with this number rather than 0. it won't be modified "
             "in place.")
        .AsDispensable();
    AddInput("Weight",
             "(float) Optional. Weight of current item. If specified, its "
186 187 188 189
             "shape should be the same as Label, and the meaning of the output "
             "changes from numbers of pairs to the total sum of pairs' "
             "weights. Weight of a pair of items is the average of their "
             "weights.")
190
        .AsDispensable();
191
    AddOutput("PositivePair",
192 193
              "(float) Number of positive pairs, i.e. the pairs of "
              "items that are ranked correctly.");
194
    AddOutput("NegativePair",
195 196
              "(float) Number of negative pairs, i.e. the pairs of "
              "items that are ranked incorrectly.");
197
    AddOutput("NeutralPair",
198 199 200 201 202 203 204 205 206 207 208
              "(float) Number of neutral pairs, i.e. the pairs of items "
              "that have the same score.")
        .AsDispensable();
    AddAttr<int>(
        "column",
        "(int, default -1) The column position of Score used to rank items in "
        "descending order. It must be in the range of [-rank(Score), "
        "rank(Score)). "
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
        "Noting that reducing on the first dim will make the LoD info lost.")
        .SetDefault(0);
209
    AddComment(R"DOC(
C
caoying03 已提交
210 211 212 213 214 215 216 217
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's
performance.

Within some context, e.g. the "query", a LTR model generates scores for a list
of items, which gives a partial order of the items. PositiveNegativePairOp
takes a list of reference rank order (Input("Label")) and the model generated
scores (Input(Score)) as inputs and counts the pairs that ranked correctly
and incorrectly.
218 219 220 221 222 223 224 225 226 227 228 229 230
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair,
                             ops::PositiveNegativePairOp,
                             ops::PositiveNegativePairOpMaker);
REGISTER_OP_CPU_KERNEL(
    positive_negative_pair,
231 232
    ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>,
    ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, double>);