naive_executor.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

X
Xin Pan 已提交
15 16 17
#include <string>
#include <vector>

18 19 20
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
X
Xin Pan 已提交
21
#include "paddle/fluid/framework/naive_executor.h"
22 23
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
W
Wang Guibao 已提交
24
#include "paddle/fluid/framework/variable_helper.h"
25 26 27 28
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
29 30 31
void NaiveExecutor::Prepare(Scope *scope, const ProgramDesc &program_desc,
                            int block_id, bool with_feed_fetch_ops) {
  if (!scope) {
32 33
    scope_ = new framework::Scope;
  } else {
34
    scope_ = scope;
35
  }
36 37

  VLOG(3) << "NaiveExecutor init with scope " << scope;
38 39 40 41
  CreateOps(program_desc, block_id, with_feed_fetch_ops);
}

void NaiveExecutor::Run() {
42 43 44 45 46 47 48 49 50 51
#ifndef PADDLE_ON_INFERENCE
  LOG_FIRST_N(WARNING, 15) << "The NaiveExecutor can not work properly if the "
                              "cmake flag ON_INFER is not set.";
  LOG_FIRST_N(WARNING, 15) << "Unlike the training phase, all the scopes and "
                              "variables will be reused to save the allocation "
                              "overhead.";
  LOG_FIRST_N(WARNING, 15) << "Please re-compile the inference library by "
                              "setting the cmake flag ON_INFER=ON if you are "
                              "running Paddle Inference";
#endif  // PADDLE_ON_INFERENCE
52
  for (auto &op : ops_) {
53 54
    VLOG(3) << std::this_thread::get_id() << " run " << op->Type()
            << " on scope " << scope_;
55
    op->SetIsCalledByExecutor(false);
56 57 58 59
    op->Run(*scope_, place_);
  }
}

60 61 62 63
void NaiveExecutor::CreateVariables(const ProgramDesc &desc, int block_id,
                                    bool persistable, Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);

64 65
  auto &global_block = desc.Block(block_id);

66 67 68 69
  const auto *anc = scope;
  PADDLE_ENFORCE(anc->parent() != anc);
  while (anc->parent()) {
    anc = anc->parent();
70 71
  }

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  for (auto &var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (persistable == var->Persistable()) {
      if (persistable) {
        if (!anc->FindVar(var->Name())) {
          auto *ptr = const_cast<Scope *>(anc)->Var(var->Name());
          VLOG(3) << scope << " Create persistable variable " << var->Name()
                  << ", which pointer is " << ptr;
          InitializeVariable(ptr, var->GetType());
        }
      } else {
        auto *ptr = const_cast<Scope *>(scope)->Var(var->Name());
        VLOG(3) << scope << " Create variable " << var->Name()
                << ", which pointer is " << ptr;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        InitializeVariable(ptr, var->GetType());
      }
    }
  }
}

void NaiveExecutor::CreateOps(const ProgramDesc &desc, int block_id,
                              bool with_feed_fetch_ops) {
  for (const auto &op_desc : desc.Block(block_id).AllOps()) {
    if (!with_feed_fetch_ops &&
        (op_desc->Type() == "feed" || op_desc->Type() == "fetch")) {
      string::PrettyLogEndl(string::Style::detail(), "---  skip [%s], %s -> %s",
                            op_desc->Input("X")[0], op_desc->Type(),
                            op_desc->Output("Out")[0]);
      continue;
    }
    ops_.emplace_back(OpRegistry::CreateOp(*op_desc));
  }
}

LoDTensor *NaiveExecutor::FindTensor(const std::string &name) {
  PADDLE_ENFORCE(scope_, "Need to init scope first");
  auto *var = scope_->FindVar(name);
  PADDLE_ENFORCE(var, "No variable [%s] in the scope");
  auto *tensor = const_cast<LoDTensor *>(&var->Get<LoDTensor>());
  return tensor;
}

void NaiveExecutor::CleanFeedFetchOps() {
  std::vector<std::unique_ptr<OperatorBase>> ops;
  for (auto &op : ops_) {
    if (op->Type() != "feed" && op->Type() != "fetch") {
      ops.emplace_back(std::move(op));
    }
  }
  ops_.swap(ops);
}

}  // namespace framework
}  // namespace paddle