test_vjp_prim.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle import ir
from paddle.fluid.core import call_vjp

paddle.enable_static()


def get_ir_program_0():
    main_program, start_program = (
        paddle.static.Program(),
        paddle.static.Program(),
    )
    with paddle.static.program_guard(main_program, start_program):
        x = paddle.tensor.fill_constant(
            shape=[1, 4], dtype='float32', value=2.0
        )
        x.stop_gradient = False
        y = paddle.tensor.fill_constant(shape=[4], dtype='float32', value=1.0)
35
        y.stop_gradient = False
36 37 38
        dout = paddle.tensor.fill_constant(
            shape=[1, 4], dtype='float32', value=1.0
        )
39
        dout.stop_gradient = False
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        out = paddle.divide(x, y)
    newir_program = ir.translate_to_new_ir(main_program.desc)
    return newir_program


def get_ir_program_1():
    main_program, start_program = (
        paddle.static.Program(),
        paddle.static.Program(),
    )
    with paddle.static.program_guard(main_program, start_program):
        x = paddle.tensor.fill_constant(
            shape=[4, 5], dtype='float32', value=2.0
        )
        x.stop_gradient = False
55 56
        dout = paddle.tensor.fill_constant(shape=[], dtype='float32', value=1.0)
        dout.stop_gradient = False
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        out = paddle.sum(x)
    newir_program = ir.translate_to_new_ir(main_program.desc)
    return newir_program


class TestVjpPrim(unittest.TestCase):
    def test_divide_grad_prim_case1(self):
        newir_program = get_ir_program_0()
        paddle.fluid.core._set_prim_backward_enabled(True)
        dout = newir_program.block().ops[-2].result(0)
        out_grads = [[dout]]
        stop_gradients = [[False], [False]]
        divide_op = newir_program.block().ops[-1]
        with paddle.ir.core.program_guard(newir_program):
            grad_outs = call_vjp(divide_op, out_grads, stop_gradients)
        reshape_op2 = newir_program.block().ops[-1]
        reshape_op1 = newir_program.block().ops[-8]
        self.assertEqual(len(grad_outs), 2)
        self.assertEqual(len(newir_program.block().ops), 21)
        self.assertEqual(reshape_op2.result(0), grad_outs[0][0])
        self.assertEqual(reshape_op1.result(0), grad_outs[1][0])
        all_op_names = [
            "pd.full",
            "pd.full",
            "pd.full",
            "pd.divide",
            "pd.full",
            "pd.elementwise_pow",
            "pd.divide",
            "pd.multiply",
            "pd.full",
            "pd.scale",
            "pd.full_int_array",
            "pd.sum",
            "pd.full_int_array",
            "pd.reshape",
            "pd.full",
            "pd.divide",
            "pd.multiply",
            "pd.full_int_array",
            "pd.sum",
            "pd.full_int_array",
            "pd.reshape",
        ]
        for idx, op in enumerate(newir_program.block().ops):
            self.assertEqual(op.name(), all_op_names[idx])

    def test_divide_grad_no_prim(self):
        newir_program = get_ir_program_0()
        paddle.fluid.core._set_prim_backward_enabled(False)
        dout = newir_program.block().ops[-2].result(0)
        out_grads = [[dout]]
        stop_gradients = [[False], [False]]
        divide_op = newir_program.block().ops[-1]
        with paddle.ir.core.program_guard(newir_program):
            grad_outs = call_vjp(divide_op, out_grads, stop_gradients)
        self.assertEqual(len(grad_outs), 2)
        self.assertEqual(
            grad_outs[0][0].get_defining_op().name(), "pd.divide_grad"
        )
        self.assertEqual(
            grad_outs[1][0].get_defining_op().name(), "pd.divide_grad"
        )
        self.assertEqual(len(newir_program.block().ops), 5)

    def test_sum_grad_prim(self):
        newir_program = get_ir_program_1()
        paddle.fluid.core._set_prim_backward_enabled(True)
125
        dout = newir_program.block().ops[-3].result(0)
126
        out_grads = [[dout]]
127
        stop_gradients = [[False], [True]]
128 129 130 131
        sum_op = newir_program.block().ops[-1]
        with paddle.ir.core.program_guard(newir_program):
            grad_outs = call_vjp(sum_op, out_grads, stop_gradients)
        expand_op = newir_program.block().ops[-1]
132
        self.assertEqual(len(grad_outs), 2)
133 134
        self.assertEqual(len(newir_program.block().ops), 8)
        self.assertEqual(expand_op.result(0), grad_outs[0][0])
135
        self.assertEqual(grad_outs[1][0], None)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        all_op_names = [
            "pd.full",
            "pd.full",
            "pd.full_int_array",
            "pd.sum",
            "pd.full_int_array",
            "pd.reshape",
            "pd.full_int_array",
            "pd.expand",
        ]
        for idx, op in enumerate(newir_program.block().ops):
            self.assertEqual(op.name(), all_op_names[idx])

    def test_sum_grad_no_prim(self):
        newir_program = get_ir_program_1()
        paddle.fluid.core._set_prim_backward_enabled(False)
        dout = newir_program.block().ops[-2].result(0)
        out_grads = [[dout]]
154
        stop_gradients = [[False], [True]]
155 156 157
        sum_op = newir_program.block().ops[-1]
        with paddle.ir.core.program_guard(newir_program):
            grad_outs = call_vjp(sum_op, out_grads, stop_gradients)
158
        self.assertEqual(len(grad_outs), 2)
159 160 161
        self.assertEqual(
            grad_outs[0][0].get_defining_op().name(), "pd.sum_grad"
        )
162
        self.assertEqual(grad_outs[1][0], None)
163
        self.assertEqual(len(newir_program.block().ops), 5)
164 165 166 167


if __name__ == "__main__":
    unittest.main()